Return to search

Monolithische Halbleiternanostrukturen als ballistische Verstärker und logische Gatter / Ballistic amplifiers and logic gates based on monolithic semiconductor nanostructures

Im Rahmen dieser Arbeit wurden monolithische Halbleiternanostrukturen hinsichtlich neuartiger nanoelektronischer Transporteffekte untersucht. Hierbei wurden gezielt der ballistische Charakter des Ladungstransportes in mesoskopischen Strukturen sowie die kapazitive Kopplung einzelner Strukturbereiche ausgenutzt, um ballistische Verstärkerelemente und logische Gatter zu realisieren. Die untersuchten Nanostrukturen basieren auf dem zweidimensionalen Elektronengas modulationsdotierter GaAs/AlGaAs-Heterostrukturen und wurden über Elektronenstrahl-Lithographie sowie nasschemische Ätztechniken realisiert. Somit entstanden niederdimensionale Leiter mit Kanalbreiten von wenigen 10 nm, deren Leitwert über planare seitliche Gates elektrisch kontrolliert werden kann. Bei den Transportuntersuchungen, die zum Teil im stark nichtlinearen Transportbereich und bei Temperaturen bis hin zu 300 K durchgeführt wurden, stellte sich das Konzept verzweigter Kanalstrukturen als vielversprechend hinsichtlich der Anwendung für eine neuartige Nanoelektronik heraus. So kann eine im Folgenden als Y-Transistor bezeichnete, verzweigte Kanalstruktur in Abhängigkeit der äußeren Beschaltung als Differenzverstärker, invertierender Verstärker, bistabiles Schaltelement oder aber auch als logisches Gatter eingesetzt werden. Zudem eröffnet der Y-Transistor einen experimentellen Zugang zu den nichtklassischen Eigenschaften nanometrischer Kapazitäten, die sich von denen rein geometrisch definierter Kapazitäten aufgrund der endlichen Zustandsdichte erheblich unterscheiden können. Für ballistische Y-Verzweigungen tritt zudem ein neuartiger Gleichrichtungseffekt auf, der in Kombination mit den verstärkenden Eigenschaften von Y-Transistoren dazu genutzt wurde, kompakte logische Gatter sowie einen ballistischen Halb-Addierer zu realisieren. / This thesis reports investigations of monolithic semiconductor nanostructures with novel nanoelectronic transport effects. In particular, it is shown that the ballistic motion of electrons in nanoelectronic devices in combination with capacitive coupling of nearby device sections can be used to realize ballistic amplifiers and logic gates. The nanostructures under investigation are based on the two dimensional electron gas of modulation doped GaAs/AlGaAs-heterostructures and were patterned by electron-beam-lithography and wet chemical etching. In this way, low dimensional conductors with widths on the order of a few 10 nm to about 100 nm controlled by in-plane gates were realized. Investigations at temperatures up to 300 K in the nonlinear transport regime show that branched nanojunctions are promising candidates for future nanoelectronic building blocks. Depending on the external circuit, gated Y-branched nanojunctions, here referred to as "Y-transistors", can be used as differential amplifiers, inverting amplifiers, bistable switches and logic gates. In addition, Y-transistors allow the experimental investigation of nonclassical properties of nanoscaled capacitors, which differ significantly from those of macroscopic capacitors due to the different densities of states. Moreover, a novel ballistic rectification effect observed for Y-branched nanojunctions is exploited to realize a ballistic in-plane half-adder with output signals amplified by feedback coupled Y-transistors.

Identiferoai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:1024
Date January 2004
CreatorsReitzenstein, Stephan
Source SetsUniversity of Würzburg
Languagedeu
Detected LanguageGerman
Typedoctoralthesis, doc-type:doctoralThesis
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0093 seconds