Die Länge der Vegetationsperiode (VP) spielt eine zentrale Rolle für die interannuelle Variation der Kohlenstoffspeicherung terrestrischer Ökosysteme. Die Analyse von Beobachtungsdaten hat gezeigt, dass sich die VP in den letzten Jahrzehnten in den nördlichen Breiten verlängert hat. Dieses Phänomen wurde oft im Zusammenhang mit der globalen Erwärmung diskutiert, da die Phänologie von der Temperatur beeinflusst wird.<br />
<br />
Die Analyse der Pflanzenphänologie in Süddeutschland im 20. Jahrhundert zeigte:<br />
- Die starke Verfrühung der Frühjahrsphasen in dem Jahrzehnt vor 1999 war kein singuläres Ereignis im 20. Jahrhundert. Schon in früheren Dekaden gab es ähnliche Trends. Es konnten Perioden mit unterschiedlichem Trendverhalten identifiziert werden.<br />
- Es gab deutliche Unterschiede in den Trends von frühen und späten Frühjahrsphasen. Die frühen Frühjahrsphasen haben sich stetig verfrüht, mit deutlicher Verfrühung zwischen 1931 und 1948, moderater Verfrühung zwischen 1948 und 1984 und starker Verfrühung zwischen 1984 und 1999. Die späten Frühjahrsphasen hingegen, wechselten ihr Trendverhalten in diesen Perioden von einer Verfrühung zu einer deutlichen Verspätung wieder zu einer starken Verfrühung.<br />
<br />
Dieser Unterschied in der Trendentwicklung zwischen frühen und späten Frühjahrsphasen konnte auch für ganz Deutschland in den Perioden 1951 bis 1984 und 1984 bis 1999 beobachtet werden.<br />
Der bestimmende Einfluss der Temperatur auf die Frühjahrsphasen und ihr modifizierender Einfluss auf die Herbstphasen konnte bestätigt werden. Es zeigt sich jedoch, dass <br />
- die Phänologie bestimmende Funktionen der Temperatur nicht mit einem globalen jährlichen CO2 Signal korreliert waren, welches als Index für die globale Erwärmung verwendet wurde<br />
- ein Index für grossräumige regionale Zirkulationsmuster (NAO-Index) nur zu einem kleinen Teil die beobachtete phänologischen Variabilität erklären konnte.<br />
<br />
Das beobachtete unterschiedliche Trendverhalten zwischen frühen und späten Frühjahrsphasen konnte auf die unterschiedliche Entwicklung von März- und Apriltemperaturen zurückgeführt werden. Während sich die Märztemperaturen im Laufe des 20. Jahrhunderts mit einer zunehmenden Variabilität in den letzten 50 Jahren stetig erhöht haben, haben sich die Apriltemperaturen zwischen dem Ende der 1940er und Mitte der 1980er merklich abgekühlt und dann wieder deutlich erwärmt.<br />
Es wurde geschlussfolgert, dass die Verfrühungen in der Frühjahrsphänologie in den letzten Dekaden Teile multi-dekadischer Fluktuationen sind, welche sich nach Spezies und relevanter saisonaler Temperatur unterscheiden. Aufgrund dieser Fluktuationen konnte kein Zusammenhang mit einem globalen Erwärmungsignal gefunden werden.<br />
Im Durchschnitt haben sich alle betrachteten Frühjahrsphasen zwischen 1951 und 1999 in Naturräumen in Deutschland zwischen 5 und 20 Tagen verfrüht. Ein starker Unterschied in der Verfrühung zwischen frühen und späten Frühjahrsphasen liegt an deren erwähntem unterschiedlichen Verhalten. Die Blattverfärbung hat sich zwischen 1951 und 1999 für alle Spezies verspätet, aber nach 1984 im Durchschnitt verfrüht. Die VP hat sich in Deutschland zwischen 1951 und 1999 um ca. 10 Tage verlängert.<br />
Es ist hauptsächlich die Änderung in den Frühjahrphasen, die zu einer Änderung in der potentiell absorbierten Strahlung (PAS) führt. Darüber hinaus sind es die späten Frühjahrsphasen, die pro Tag Verfrühung stärker profitieren, da die zusätzlichen Tage länger undwärmer sind als dies für die frühen Phasen der Fall ist. Um die relative Änderung in PAS im Vergleich der Spezies abzuschätzen, müssen allerdings auch die Veränderungen in den Herbstphasen berücksichtigt werden.<br />
Der deutliche Unterschied zwischen frühen und späten Frühjahrsphasen konnte durch die Anwendung einer neuen Methode zur Konstruktion von Zeitreihen herausgearbeitet werden. Der neue methodische Ansatz erlaubte die Ableitung verlässlicher 100-jähriger Zeitreihen und die Konstruktion von lokalen kombinierten Zeitreihen, welche die Datenverfügbarkeit für die Modellentwicklung erhöhten.<br />
Ausser analysierten Protokollierungsfehlern wurden mikroklimatische, genetische und Beobachtereinflüsse als Quellen von Unsicherheit in phänologischen Daten identifiziert. Phänologischen Beobachtungen eines Ortes können schätzungsweise 24 Tage um das parametrische Mittel schwanken.Dies unterstützt die 30-Tage Regel für die Detektion von Ausreissern.<br />
Neue Phänologiemodelle, die den Blattaustrieb aus täglichen Temperaturreihen simulieren, wurden entwickelt. Diese Modelle basieren auf einfachen Interaktionen zwischen aktivierenden und hemmenden Substanzen, welche die Entwicklungsstadien einer Pflanze bestimmen. Im Allgemeinen konnten die neuen Modelle die Beobachtungsdaten besser simulieren als die klassischen Modelle.<br />
<br />
Weitere Hauptresultate waren:<br />
- Der Bias der klassischen Modelle, d.h. Überschätzung von frühen und Unterschätzung von späten Beobachtungen, konnte reduziert, aber nicht vollständig eliminiert werden.<br />
- Die besten Modellvarianten für verschiedene Spezies wiesen darauf hin, dass für die späten Frühjahrsphasen die Tageslänge eine wichtigere Rolle spielt als für die frühen Phasen.<br />
- Die Vernalisation spielte gegenüber den Temperaturen kurz vor dem Blattaustrieb nur eine untergeordnete Rolle. / The length of the vegetation period (VP) plays a central role for the interannual variation of carbon fixation of terrestrial ecosystems. Observational data analysis has indicated that the length of the VP has increased in the last decades in the northern latitudes mainly due to an advancement of bud burst (BB). This phenomenon has been widely discussed in the context of Global Warming because phenology is correlated to temperatures. <br />
<br />
Analyzing the patterns of spring phenology over the last century in Southern Germany provided two main findings:<br />
- The strong advancement of spring phases especially in the decade before 1999 is not a singular event in the course of the 20th century. Similar trends were also observed in earlier decades. Distinct periods of varying trend behavior for important spring phases could be distinguished.<br />
- Marked differences in trend behavior between the early and late spring phases were detected. Early spring phases changed as regards the magnitude of their negative trends from strong negative trends between 1931 and 1948 to moderate negative trends between 1948 and 1984 and back to strong negative trends between 1984 and 1999. Late spring phases showed a different behavior. Negative trends between 1931 and 1948 are followed by marked positive trends between 1948 and 1984 and then strong negative trends between 1984 and 1999.<br />
This marked difference in trend development between early and late spring phases was also found all over Germany for the two periods 1951 to 1984 and 1984 to 1999.<br />
<br />
The dominating influence of temperature on spring phenology and its modifying effect on autumn phenology was confirmed in this thesis. However,<br />
- temperature functions determining spring phenology were not significantly correlated with a global annual CO2 signal which was taken as a proxy for a Global Warming pattern.<br />
- an index for large scale regional circulation patterns (NAO index) could only to a small part explain the observed phenological variability in spring.<br />
<br />
The observed different trend behavior of early and late spring phases is explained by the differing behavior of mean March and April temperatures. Mean March temperatures have increased on average over the 20th century accompanied by an increasing variation in the last 50 years. April temperatures, however, decreased between the end of the 1940s and the mid-1980s, followed by a marked warming after the mid-1980s. <br />
It can be concluded that the advancement of spring phenology in recent decades are part of multi-decadal fluctuations over the 20th century that vary with the species and the relevant seasonal temperatures. Because of these fluctuations a correlation with an observed Global Warming signal could not be found.<br />
On average all investigated spring phases advanced between 5 and 20 days between 1951 and 1999 for all Natural Regions in Germany. A marked difference be! tween late and early spring phases is due to the above mentioned differing behavior before and after the mid-1980s. Leaf coloring (LC) was delayed between 1951 and 1984 for all tree species. However, after 1984 LC was advanced. Length of the VP increased between 1951 and 1999 for all considered tree species by an average of ten days throughout Germany.<br />
It is predominately the change in spring phases which contributes to a change in the potentially absorbed radiation. Additionally, it is the late spring species that are relatively more favored by an advanced BB because they can additionally exploit longer days and higher temperatures per day advancement. To assess the relative change in potentially absorbed radiation among species, changes in both spring and autumn phenology have to be considered as well as where these changes are located in the year.<br />
For the detection of the marked difference between early and late spring phenology a new time series construction method was developed. This method allowed the derivation of reliable time series that spanned over 100 years and the construction of locally combined time series increasing the available data for model development.<br />
Apart from analyzed protocolling errors, microclimatic site influences, genetic variation and the observers were identified as sources of uncertainty of phenological observational data. It was concluded that 99% of all phenological observations at a certain site will vary within approximately 24 days around the parametric mean. This supports to the proposed 30-day rule to detect outliers. <br />
New phenology models that predict local BB from daily temperature time series were developed. These models were based on simple interactions between inhibitory and promotory agents that are assumed to control the developmental status of a plant. Apart from the fact that, in general, the new models fitted and predicted the observations better than classical models, the main modeling results were: <br />
- The bias of the classical models, i.e. overestimation of early observations and underestimation of late observations, could be reduced but not completely removed. <br />
- The different favored model structures for each species indicated that for the late spring phases photoperiod played a more dominant role than for early spring phases. <br />
- Chilling only plays a subordinate role for spring BB compared to temperatures directly preceding BB.
Identifer | oai:union.ndltd.org:Potsdam/oai:kobv.de-opus-ubp:50 |
Date | January 2002 |
Creators | Schaber, Jörg |
Publisher | Universität Potsdam, Mathematisch-Naturwissenschaftliche Fakultät. Institut für Geoökologie |
Source Sets | Potsdam University |
Language | English |
Detected Language | German |
Type | Text.Thesis.Doctoral |
Format | application/pdf |
Rights | http://opus.kobv.de/ubp/doku/urheberrecht.php |
Page generated in 0.0027 seconds