Consensus strategies are examined as a possible approach to achieving attitude alignment for a large, close-proximity formation of nanosatellites in low earth orbit (LEO). An attitude-only distributed consensus approach is selected for further consideration due to its comparatively low data transmission requirements. The convergence of a connected network of satellites to the attitude agreement subspace under this control law is shown using a Lyapunov stability approach with a set of idealizing assumptions. A moderate-fidelity simulation demonstrates the performance of the control law under realistic conditions that violate those assumptions. Particular emphasis is placed on the conditions that arise from the limitations of the nanosatellite form factor, namely the low accuracy of sensors and the limited computational resources. The sensitivity of the pointing performance to these factors is characterized, and the control approach is shown to be viable for use in future nanosatellite missions.
Identifer | oai:union.ndltd.org:CALPOLY/oai:digitalcommons.calpoly.edu:theses-4303 |
Date | 01 June 2023 |
Creators | Mendelson, Laird J |
Publisher | DigitalCommons@CalPoly |
Source Sets | California Polytechnic State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Master's Theses |
Page generated in 0.0023 seconds