Este trabalho apresenta uma nova estratégia computacional para classificar nódulos mamográficos, que podem ser identificados por radiologistas nos exames de mamografia, em benignos ou malignos. Para a realização dos experimentos computacionais, foram utilizados 57 regiões suspeitas de câncer (ROIs) encontrados pelo radiologista nos exames de mamografia. Das 57 ROIs, 37 foram identificadas como nódulos benignos e 20 identificadas como nódulos malignos, após o exame de biópsia. Com base nestas 57 ROIs são aplicadas técnicas de processamento de imagens para extrair determinadas características que possibilitam classificar um nódulo como benigno ou maligno. Estas características são separadas em três conjuntos: três características de forma, quatorze características de textura e três características de nitidez da borda. A estratégia computacional usada para classificar esses três conjuntos de características foi o classificador Máquina de Comitê. A Máquina de Comitê é formado por um grupo de classificadores, usados para resolver uma tarefa difícil. Os membros do comitê são tipicamente Redes Neurais Artificiais. Nesse trabalho foram usados Perceptrons de Múltiplas Camadas (MLP) como classificador da Máquina de Comitê. O resultado da classificação é dado pela combinação das respostas de cada classificador. Experimento envolvendo alteração na configuração da Máquina de Comitê também foi realizado. A precisão da classificação foi avaliada utilizando o cálculo da área sob a curva Receiver Operating Characteristics (ROC), designada por Az. O resultado de Az apresentado pela Máquina de Comitê é comparado com o resultado de outros classificadores neurais, como MLPs e Perceptrons de Camada Simples (SLP). Os resultados são apresentados pela média e desvio padrão de 20 experimentos. Para concluir se o resultado apresentado por um classificador é melhor que o outro, foram realizados testes de hipóteses utilizando a distribuição de Student t. / This work addresses a new approach using a committee machine to classify masses found in mammograms as benign or malignant. The characteristics sets used in the classification are: Three shape factors, three measures of edge sharpness, and fourteen texture features. They were used for the classification of 37 regions of interest (ROIs) related to benign masses and 20 ROIs of malignant tumors. The committee machine is a group of classifiers used to resolve a difficult task. Committee members are typically neural networks. In this work, we used a group of multi-layer perceptrons (MLPs) as a committee machine classifier. The classification results were realized by combining the responses of these classifiers. Experiments involving change in the learning algorithm of the committee machine also were conducted. The classification accuracy was evaluated using the area Az under the receiver operating characteristics (ROC) curve. The Az result for the committee machine was compared with the Az results obtained using MLP and single-layer perceptron (SLP) neural networks. In almost all cases, the committee machine outperformed the MLP and SLP. For a better understanding about the results of the experiments we carried out the hypothesis test using the Student\'s t-Distribution and it showed that the Committee Machine classifier has better results than MLP and SLP classifiers.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-05092006-203231 |
Date | 16 February 2005 |
Creators | Leandro Augusto da Silva |
Contributors | Emilio Del Moral Hernandez, Reinaldo Augusto da Costa Bianchi, Roseli de Deus Lopes |
Publisher | Universidade de São Paulo, Engenharia Elétrica, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0028 seconds