Friedreich's ataxia (FRDA) is the most prevalent inherited ataxia, affecting one in every 50,000 individuals in the United States. This hereditary condition is caused by an abnormal GAA trinucleotide repeat expansion within the first intron of the frataxin gene resulting in decreased levels of the frataxin protein (FXN). Insufficient cellular frataxin levels results in iron accumulation, increased reactive oxygen species production and mitochondrial dysfunction. Tissues most heavily impacted are those most dependent on oxidative phosphorylation as an energy source and include the nervous system and muscle tissue. This is evident in the clinical phenotype which includes muscle weakness, ataxia, neurodegeneration and cardiomyopathy. However, there has been a lack of data regarding the cell type specific contributions in FRDA pathogenesis. We generated a cohort of induced pluripotent stem cells (iPSCs) consisting of FRDA patient lines, CRISPR-Cas9 edited controls, carriers and non-related controls. Our preliminary data identified a hyperinflammatory microglial phenotype with extensive defects in mitochondrial function; since microglia are the primary innate immune cell of the brain, we hypothesized microglia may decrease neuronal viability which contributes to FRDA pathology. To investigate this, the iPSC cohort was utilized to generate microglia (iMGs) and neurons to better understand microglia-mediated neurodegeneration and how this contributes to pathology. An in vitro co-culture model composed of neurons, astrocytes and microglia was employed to better understand microglia-neuronal communication in FRDA. Healthy neurons co-cultured with FRDA iMG or with FRDA iMG-conditioned media demonstrated higher incidences of caspase-3 mediated apoptosis. These findings were recapitulated in vivo as xenotransplantation of FRDA microglia progenitors into a murine model resulted in reduced Purkinje cell survival in the cerebellum. Previous research has demonstrated the therapeutic potential of wildtype microglia to rescue the FRDA phenotype in the Y8GR mouse model of FRDA. To further explore the potential mechanisms behind this rescue, the delivery of mitochondria and FXN to FRDA microglia and neurons was investigated. CRISPR-Cas9 edited microglia demonstrated transfer of healthy mitochondria to FRDA microglia and neurons in an in vitro co-culture model. To investigate the transfer of frataxin protein, an FRDA iPSC line was transduced with an FXN-GFP lentivirus. Restoring FXN expression was demonstrated to rescue the FRDA microglial morphological phenotype. FXN-GFP microglia demonstrated transfer of frataxin protein to FRDA microglia suggesting the potential role of microglia as a therapeutic vehicle in FRDA. Together these findings show that FRDA microglia have a deleterious effect on neuronal viability, while healthy microglia may work as a therapeutic vehicle through the delivery of mitochondria and frataxin to FRDA cells.
Identifer | oai:union.ndltd.org:CALPOLY/oai:digitalcommons.calpoly.edu:theses-4521 |
Date | 01 June 2024 |
Creators | Gillette, Sydney N |
Publisher | DigitalCommons@CalPoly |
Source Sets | California Polytechnic State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Master's Theses |
Page generated in 0.0026 seconds