Return to search

Zero-shot, One Kill: BERT for Neural Information Retrieval

[Background]: The advent of bidirectional encoder representation from trans- formers (BERT) language models (Devlin et al., 2018) and MS Marco, a large scale human-annotated dataset for machine reading comprehension (Bajaj et al., 2016) that made publicly available, led the field of information retrieval (IR) to experience a revolution (Lin et al., 2020). The retrieval model based on BERT of Nogueira and Cho (2019), by the time they published their paper, became the top entry in the MS Marco passage-reranking leaderboard, surpassing the previous state of the art by 27% in MRR@10. However, training such neural IR models for different domains than MS Marco is still hard because neural approaches often require a vast amount of training data to perform effectively, which is not always available. To address the problem of the shortage of labelled data a new line of research emerged, training neural models with weak supervision. In weak supervision, given an unlabelled dataset labels are generated automatically using an existing model and then a machine learning model is trained upon the artificial “weak“ data. In case of weak supervision for IR, the training dataset comes in the form of a tuple (query, passage). Dehghani et al. (2017) in their work used the AOL query logs (Pass et al., 2006), which is a set of millions of real web queries, and BM25 to retrieve the relevant passages for each of the user queries. A drawback with this approach is that it is hard to obtain query logs for every single different domain. [Objective]: This thesis proposes an intuitive approach for addressing the shortage of data in domains with limited or no data at all through transfer learning in the context of IR. We leverage Wikipedia’s structure for creating a Wikipedia-based generic IR training dataset for zero-shot neural models. [Method]: We create the “pseudo-queries“ by concatenating the titles of Wikipedia’s articles along with each of their title sections and we consider the associated section’s passage as the relevant passage of the pseudo-queries. All of our experiments are evaluated on a standard collection: MS Marco, which is a large scale web collection. For our zero-shot experiments, our proposed model, called “Wiki“, is a BERT model trained on the artificial Wikipedia-based dataset and the baseline is a default BERT model without any additional training. In our second line of experiments, we explore the benefits gained by pre-fine- tuning on the Wikipedia-based IR dataset and further fine-tuning on in-domain data. Our proposed model, "Wiki+Ma", is a BERT model pre-fine-tuned in the Wikipedia-based dataset and further fine-tuned in MS Marco, while the baseline is a BERT model fine-tuned only in MS Marco. [Results]: Results regarding our first experiments show that our BERT model trained on the Wikipedia-based IR dataset, called "Wiki", achieves a performance of 0.197 in MRR@10, which is about +10 points more in comparison to a BERT model with default weights; in addition, results in the development set indicate that the “Wiki“ model performs better than BERT model trained on in-domain data when the data is between 10k-50k instances. Results regarding our second line of experiments show that pre-fine-tuning on the Wikipedia-based IR dataset benefits later fine-tuning steps on in-domain data in terms of stability. [Conclusion]: Our findings suggest that transfer learning for IR tasks by leveraging the generic knowledge incorporated in Wikipedia is possible, though more experimentation is needed to understand its limitations in comparison with the traditional approaches such as the BM25.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-444835
Date January 2021
CreatorsEfes, Stergios
PublisherUppsala universitet, Institutionen för lingvistik och filologi
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.003 seconds