• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Transfer Learning in Deep Structured Semantic Models for Information Retrieval / Kunskapsöverföring mellan datamängder i djupa arkitekturer för informationssökning

Zarrinkoub, Sahand January 2020 (has links)
Recent approaches to IR include neural networks that generate query and document vector representations. The representations are used as the basis for document retrieval and are able to encode semantic features if trained on large datasets, an ability that sets them apart from classical IR approaches such as TF-IDF. However, the datasets necessary to train these networks are not available to the owners of most search services used today, since they are not used by enough users. Thus, methods for enabling the use of neural IR models in data-poor environments are of interest. In this work, a bag-of-trigrams neural IR architecture is used in a transfer learning procedure in an attempt to increase performance on a target dataset by pre-training on external datasets. The target dataset used is WikiQA, and the external datasets are Quora’s Question Pairs, Reuters’ RCV1 and SQuAD. When considering individual model performance, pre-training on Question Pairs and fine-tuning on WikiQA gives us the best individual models. However, when considering average performance, pre-training on the chosen external dataset result in lower performance on the target dataset, both when all datasets are used together and when they are used individually, with different average performance depending on the external dataset used. On average, pre-training on RCV1 and Question Pairs gives the lowest and highest average performance respectively, when considering only the pre-trained networks. Surprisingly, the performance of an untrained, randomly generated network is high, and beats the performance of all pre-trained networks on average. The best performing model on average is a neural IR model trained on the target dataset without prior pre-training. / Nya modeller inom informationssökning inkluderar neurala nät som genererar vektorrepresentationer för sökfrågor och dokument. Dessa vektorrepresentationer används tillsammans med ett likhetsmått för att avgöra relevansen för ett givet dokument med avseende på en sökfråga. Semantiska särdrag i sökfrågor och dokument kan kodas in i vektorrepresentationerna. Detta möjliggör informationssökning baserat på semantiska enheter, vilket ej är möjligt genom de klassiska metoderna inom informationssökning, som istället förlitar sig på den ömsesidiga förekomsten av nyckelord i sökfrågor och dokument. För att träna neurala sökmodeller krävs stora datamängder. De flesta av dagens söktjänster används i för liten utsträckning för att möjliggöra framställande av datamängder som är stora nog att träna en neural sökmodell. Därför är det önskvärt att hitta metoder som möjliggör användadet av neurala sökmodeller i domäner med små tillgängliga datamängder. I detta examensarbete har en neural sökmodell implementerats och använts i en metod avsedd att förbättra dess prestanda på en måldatamängd genom att förträna den på externa datamängder. Måldatamängden som används är WikiQA, och de externa datamängderna är Quoras Question Pairs, Reuters RCV1 samt SquAD. I experimenten erhålls de bästa enskilda modellerna genom att föträna på Question Pairs och finjustera på WikiQA. Den genomsnittliga prestandan över ett flertal tränade modeller påverkas negativt av vår metod. Detta äller både när samtliga externa datamänder används tillsammans, samt när de används enskilt, med varierande prestanda beroende på vilken datamängd som används. Att förträna på RCV1 och Question Pairs ger den största respektive minsta negativa påverkan på den genomsnittliga prestandan. Prestandan hos en slumpmässigt genererad, otränad modell är förvånansvärt hög, i genomsnitt högre än samtliga förtränade modeller, och i nivå med BM25. Den bästa genomsnittliga prestandan erhålls genom att träna på måldatamängden WikiQA utan tidigare förträning.
2

Zero-shot, One Kill: BERT for Neural Information Retrieval

Efes, Stergios January 2021 (has links)
[Background]: The advent of bidirectional encoder representation from trans- formers (BERT) language models (Devlin et al., 2018) and MS Marco, a large scale human-annotated dataset for machine reading comprehension (Bajaj et al., 2016) that made publicly available, led the field of information retrieval (IR) to experience a revolution (Lin et al., 2020). The retrieval model based on BERT of Nogueira and Cho (2019), by the time they published their paper, became the top entry in the MS Marco passage-reranking leaderboard, surpassing the previous state of the art by 27% in MRR@10. However, training such neural IR models for different domains than MS Marco is still hard because neural approaches often require a vast amount of training data to perform effectively, which is not always available. To address the problem of the shortage of labelled data a new line of research emerged, training neural models with weak supervision. In weak supervision, given an unlabelled dataset labels are generated automatically using an existing model and then a machine learning model is trained upon the artificial “weak“ data. In case of weak supervision for IR, the training dataset comes in the form of a tuple (query, passage). Dehghani et al. (2017) in their work used the AOL query logs (Pass et al., 2006), which is a set of millions of real web queries, and BM25 to retrieve the relevant passages for each of the user queries. A drawback with this approach is that it is hard to obtain query logs for every single different domain. [Objective]: This thesis proposes an intuitive approach for addressing the shortage of data in domains with limited or no data at all through transfer learning in the context of IR. We leverage Wikipedia’s structure for creating a Wikipedia-based generic IR training dataset for zero-shot neural models. [Method]: We create the “pseudo-queries“ by concatenating the titles of Wikipedia’s articles along with each of their title sections and we consider the associated section’s passage as the relevant passage of the pseudo-queries. All of our experiments are evaluated on a standard collection: MS Marco, which is a large scale web collection. For our zero-shot experiments, our proposed model, called “Wiki“, is a BERT model trained on the artificial Wikipedia-based dataset and the baseline is a default BERT model without any additional training. In our second line of experiments, we explore the benefits gained by pre-fine- tuning on the Wikipedia-based IR dataset and further fine-tuning on in-domain data. Our proposed model, "Wiki+Ma", is a BERT model pre-fine-tuned in the Wikipedia-based dataset and further fine-tuned in MS Marco, while the baseline is a BERT model fine-tuned only in MS Marco. [Results]: Results regarding our first experiments show that our BERT model trained on the Wikipedia-based IR dataset, called "Wiki", achieves a performance of 0.197 in MRR@10, which is about +10 points more in comparison to a BERT model with default weights; in addition, results in the development set indicate that the “Wiki“ model performs better than BERT model trained on in-domain data when the data is between 10k-50k instances. Results regarding our second line of experiments show that pre-fine-tuning on the Wikipedia-based IR dataset benefits later fine-tuning steps on in-domain data in terms of stability. [Conclusion]: Our findings suggest that transfer learning for IR tasks by leveraging the generic knowledge incorporated in Wikipedia is possible, though more experimentation is needed to understand its limitations in comparison with the traditional approaches such as the BM25.

Page generated in 0.1116 seconds