Return to search

Systèmes neuromorphiques temps réel : contribution à l’intégration de réseaux de neurones biologiquement réalistes avec fonctions de plasticité

Cette thèse s’intègre dans le cadre du projet Européen FACETS. Pour ce projet, des systèmes matériels mixtes analogique-numérique effectuant des simulations en temps réel des réseaux de neurones doivent être développés. Le but est d’aider à la compréhension des phénomènes d’apprentissage dans le néocortex. Des circuits intégrés spécifiques analogiques ont préalablement été conçus par l’équipe pour simuler le comportement de plusieurs types de neurones selon le formalisme de Hodgkin-Huxley. La contribution de cette thèse consiste à la conception et la réalisation des circuits numériques permettant de gérer la connectivité entre les cellules au sein du réseau de neurones, suivant les règles de plasticité configurées par l’utilisateur. L’implantation de ces règles est réalisée sur des circuits numériques programmables (FPGA) et est optimisée pour assurer un fonctionnement temps réel pour des réseaux de grande taille. Des nouvelles méthodes de calculs et de communication ont été développées pour satisfaire les contraintes temporelles et spatiales imposées par le degré de réalisme souhaité. Entre autres, un protocole de communication basé sur la technique anneau à jeton a été conçu pour assurer le dialogue entre plusieurs FPGAs situés dans un système multicarte tout en garantissant l’aspect temps-réel des simulations. Les systèmes ainsi développés seront exploités par les laboratoires partenaires, neurobiologistes ou informaticiens. / This work has been supported by the European FACETS project. Within this project, we contribute in developing hardware mixed-signal devices for real-time spiking neural network simulation. These devices may potentially contribute to an improved understanding of learning phenomena in the neo-cortex. Neuron behaviours are reproduced using analog integrated circuits which implement Hodgkin-Huxley based models. In this work, we propose a digital architecture aiming to connect many neuron circuits together, forming a network. The inter-neuron connections are reconfigurable and can be ruled by a plasticity model. The architecture is mapped onto a commercial programmable circuit (FPGA). Many methods are developed to optimize the utilisation of hardware resources as well as to meet real-time constraints. In particular, a token-passing communication protocol has been designed and developed to guarantee real-time aspects of the dialogue between several FPGAs in a multiboard system allowing the integration of a large number of neurons. The global system is able to run neural simulations in biological real-time with high degree of realism, and then can be used by neurobiologists and computer scientists to carry on neural experiments.

Identiferoai:union.ndltd.org:theses.fr/2010BOR14051
Date22 July 2010
CreatorsBelhadj-Mohamed, Bilel
ContributorsBordeaux 1, Renaud, Sylvie, Tomas, Jean
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0019 seconds