Submitted by Cássia Santos (cassia.bcufg@gmail.com) on 2014-09-18T15:33:16Z
No. of bitstreams: 2
Dissertacao Yerko Contreras Rojas.pdf: 673331 bytes, checksum: 5359343f8c3a32e21369c3bc57917634 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2014-09-18T15:43:59Z (GMT) No. of bitstreams: 2
Dissertacao Yerko Contreras Rojas.pdf: 673331 bytes, checksum: 5359343f8c3a32e21369c3bc57917634 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2014-09-18T15:43:59Z (GMT). No. of bitstreams: 2
Dissertacao Yerko Contreras Rojas.pdf: 673331 bytes, checksum: 5359343f8c3a32e21369c3bc57917634 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Previous issue date: 2013-07-05 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / This document presents an approach and development of some of the results of
Shumyatsky in [14, 15, 16, 17, 18], where he worked with automorphisms of order two
in finite groups of odd order, mainly showing the influence that the structure of the
centralizer has on that of Group. Let G be a group with odd order, and ϕ an automorphism
on G, of order two, where G = [G,ϕ], and given a limitation in the order of the centralizer
of ϕ regard to G, CG(ϕ), which induces a limitation in the order of derived group G′ of
group G, and we also verified that G has a normal subgroup H that is ϕ-invariant, such
that H′ ≤ Gϕ and its index [G : H] is bounded with the initial limitation. With the same
hypothesis of the group G and with the same limitation of the order of the centralizer of
the automorphism, let V a abelian p-group such that G⟨ϕ⟩ act faithful and irreductible
on V, then there is a bounded constant k, limitated by a function depending only on the
parameter m, where m is tha limitation in the order of CG(ϕ), and elements x1, ...xk ∈ G−ϕ
such that V = ρϕx
1,...,xk(V−ϕ). / O trabalho baseia-se na apresentação e desenvolvimento de alguns resultados expostos
por Shumyatsky em [14, 15, 16, 17, 18], onde trabalha com automorfismos de ordem
dois em grupos de ordem ímpar, mostrando fundamentalmente a influência da estrutura
do centralizador do automorfismo na estrutura do grupo. Seja G um grupo de ordem
ímpar e ϕ um automorfismo de G, de ordem dois, tal que G = [G,ϕ], dada uma limitação
na ordem do centralizador de ϕ em G, CG(ϕ), a mesma induz uma limitação na ordem do
grupo derivado G′ do grupo G, além disso verificamos que G tem um subgrupo H normal
ϕ-invariante, tal que H′ ≤ Gϕ e o índice [G : H] é limitado dependendo da limitação
inicial de CG(ϕ). Nas mesmas hipóteses do grupo G e com a mesma limitação da ordem
do centralizador do automorfismo, seja V um p-grupo abeliano, tal que G⟨ϕ⟩ age fiel e
irredutivelmente sobre V, então existe uma constante k, limitada por uma função que
depende só da limitação de CG(ϕ), e elementos x1, ...xk ∈ G−ϕ, tal que V = ρϕx
1,...,xk(V−ϕ).
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.bc.ufg.br:tede/3090 |
Date | 05 July 2013 |
Creators | Rojas, Yerko Contreras |
Contributors | Lima, Aline de Souza |
Publisher | Universidade Federal de Goiás, Programa de Pós-graduação em Matemática (IME), UFG, Brasil, Instituto de Matemática e Estatística - IME (RG) |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFG, instname:Universidade Federal de Goiás, instacron:UFG |
Rights | http://creativecommons.org/licenses/by-nc-nd/4.0/, info:eu-repo/semantics/openAccess |
Relation | 6600717948137941247, 600, 600, 600, 600, -4268777512335152015, -8577563216052656962, 2075167498588264571, [1] ASAR, A. Involutory automorphisms of groups of odd order. Arch. Math.36, p. 97–103, 1981. [2] BURNSIDE, W. Theory of Groups. Dover, New York, 1955. [3] FEIT, W. THOMPSON, J. Solvability of groups of odd order. Pacific J Math 13, p. 773–1029, 1963. [4] GORENSTEIN, D. Finite Groups. Harper and Row, New York, 1968. [5] HARTLEY, B. Periodic locally soluble groups containing an element of prime order with cêrnikov centralizer. Q. J Math, Oxford,2 33, p. 309–323, 1982. [6] HARTLEY, B. MEIXNER, T. Periodic groups in which the centralizer of an involution has bounded order. J Algebra, 64:285–291, 1980. [7] HARTLEY, B. MEIXNER, T. Finite soluble groups in which the centralizer of an element the prime order is small. Arch. Math., 36:211–213, 1981. [8] HIGMAN, G. Groups and rings having automorphisms without non-trivial fixed elements. J. London Math. Soc., 2(32):321–334, 1957. [9] HUNDERFORD, T. Algebra. Springer-Verlag, New York, 1980. [10] ISAACS, M. Finite Group Theory. Volumen 92 de Graduate Studies in Mathematics, American Mathematical Soc, 2008. [11] KHUKHRO, E. Nilpotent Groups and their Automorphisms. de Gruyter-Verlag, Berlin, 1993. [12] KOVACS, L.G. WALL, G. Involutory automorphisms of groups of odd order and their fixed point groups. Nagoya Math J, (27):113–120, 1966. [13] ROTMAN, J. An Introduction to the Theory of Groups. Springer-Verlag, fourth edition, 1994. [14] SHUMYATSKY, P. Involutory automorphisms of locally soluble periodic groups. J Algebra, (155):36–44, 1993. [15] SHUMYATSKY, P. Involutory automorphisms of periodic groups. Internat J Algebra Comput, (6):745–749, 1996. [16] SHUMYATSKY, P. Involutory automorphisms of finite groups and their centralizers. Arch Math (Basel), (71):425–432, 1998. [17] SHUMYATSKY, P. Involutory automorphisms of groups of odd order. Monatsh. Math, (146):77–82, 2005. [18] SHUMYATSKY, P. Centralizer of involutory automorphisms of groups of odd order. Journal of Álgebra, (315):954–962, 2007. [19] THOMPSON, J. Finite groups with fixed point-free-automorphisms of prime order. Proc. Natl. Acad. Sci. U.S.A., (45):578–581, 1959. [20] THOMPSON, J. automorphisms of solvable groups. Journal. Algebra, (1):259–267, 1964. [21] WARD, J. Involutory automorphisms of groups of odd order. J Austral Math Soc, (6):480–494, 1966. |
Page generated in 0.0241 seconds