La dénitrification autotrophe utilisant le fer Ferreux est un bioprocédé innovant pour l'élimination des nitrates, en même temps que l'oxydation du fer dans les eaux usées. Les dénitrifiants chimio-autotrophes convertissent le nitrate en azote gazeux et l'oxydation du Fe(II) conduit à la production de précipités de fer ferrique qui peuvent ensuite être enlevés et récupérés. La possibilité de maintenir une dénitrification autotrophe avec le fer ferreux en utilisant une culture mixte de Thiobacillus, un inoculum de boue activée et des cultures pures de la souche Pseudogulbenkiania 2002 et de T. denitrificans dans différentes conditions de pH et d'EDTA:Fe(II) a été initialement étudiée dans des essais biologiques par lots. Des ratios plus faibles d’EDTA:Fe(II) se traduisent par une efficacité et des taux d'élimination des nitrates plus élevés. La culture mixte de Thiobacillus présente le taux d'élimination de nitrate le plus élevé, égal à 1.18 mM•(g VSS•d)-1.Par la suite, la culture mixte de Thiobacillus a été ensemencée dans deux réacteurs à lit tassé à flux montant identiques. Les deux réacteurs (réacteur 1 et 2) ont reçu respectivement 120 et 60 mg / L de nitrate et une alimentation différente de Fe (II) afin de respecter un rapport molaire Fe(II):NO3- de 5:1. L’EDTA a été supplémenté à un rapport molaire EDTA:Fe(II) de 0,5:1. Le pH, le TRH et la température étaient de 6,5-7,0, 31 h et 22 ± 2 ° C. Dans le réacteur 1, le TRH a été raccourci de 31 à 24 h et la concentration de NO3- a été maintenue stable à 250 mg / L. Inversement, le réacteur 2 a été mis en fonctionnement avec un TRH décroissant et une concentration de NO3- en alimentation, maintenant ainsi un taux de charge de NO3- stable. Après environ 80 jours d'incubation, l'élimination des nitrates était de 88% dans le réacteur 1 pour un THR de 31 h. L'élimination de nitrates la plus élevée obtenue dans le réacteur 2 était de 80%. Une diminution du TRH de 31 à 24 h n'a pas affecté l'élimination du nitrate dans le réacteur 1, alors que dans le réacteur 2 l'élimination du nitrate a diminué à 64%.De plus, l'influence des métaux lourds (Ni, Cu, Zn) sur la dénitrification autotrophe utilisant du fer ferreux a été évaluée dans des essais biologiques discontinus, en utilisant les mêmes quatre cultures microbiennes différentes. L'efficacité et les taux d'élimination des nitrates les plus élevés ont été obtenus avec la culture mixte dominante de Thiobacillus, alors que la souche Pseudogulbenkiania de 2002 était la moins efficace. Cu s'est avéré être le métal le plus inhibiteur pour les cultures mixtes. Un impact plus faible a été observé lorsque le Zn a été ajouté. Le Ni présentait l'effet inhibiteur le plus faible. Une sensibilité plus élevée à la toxicité des métaux a été observée pour les cultures pures. Enfin, la caractérisation minérale des précipités obtenus pour les expériences avec du Cu, Ni et Zn a été étudiée. Chez les témoins abiotiques, l'oxydation chimique du Fe (II) a entraîné la formation d'hématite. Un mélange de différents (hydro)oxides de Fe(III) a été observé pour toutes les cultures microbiennes, et en particulier : i) un mélange d'hématite, d'akaganéite et / ou de ferrihydrite a été observé dans les précipités des expériences réalisées avec la culture mixte dominée par la présence de Thiobacillus; ii) en plus d'hématite, de l'akaganeite et / ou de la ferrihydrite, la maghémite a été identifiée lorsque la culture pure de T. denitrificans a été utilisée; iii) l'utilisation de la culture pure de la souche Pseudogulbenkiania 2002 a entraîné la formation d'hématite et de maghémite; enfin, l'enrichissement en boues activées a permis la production d'hématite et de magnétite en plus de la maghémite. Aucune différence concernant la minéralogie des précipités n'a été observée avec l'addition de Cu, alors que l'addition de Ni et de Zn a probablement stimulé la formation de maghémite. Une caractérisation minérale supplémentaire est cependant nécessaire / Ferrous iron mediated autotrophic denitrification is an innovative bioprocess for nitrate removal, simultaneously with iron oxidation in wastewaters. Chemoautotrophic denitrifiers convert nitrate to nitrogen gas and Fe(II) oxidation results in the production of ferric iron precipitates that can be subsequently removed and recovered. The feasibility of maintaining Fe(II)-mediated autotrophic denitrification with a Thiobacillus mixed culture, an activated sludge inoculum and pure cultures of Pseudogulbenkiania strain 2002 and T. denitrificans under different pH and EDTA:Fe(II) conditions was initially investigated in batch bioassays. Lower EDTA: Fe(II) ratios resulted in higher nitrate removal efficiency and rates. The Thiobacillus mixed culture resulted in the highest specific nitrate removal rate, equal to 1.18 mM•(g VSS•d)-1.Subsequently, the Thiobacillus mixed culture was seeded in two identical up-flow packed bed reactors. The two reactors (reactor 1 and 2) were fed with 120 and 60 mg/L of nitrate, respectively, and a different Fe(II) feed in order to respect a molar ratio Fe(II):NO3- 5:1. EDTA was supplemented at a EDTA:Fe(II) molar ratio 0.5:1. The pH, HRT and temperature were 6.5-7.0, 31 h and 22±2°C. In reactor 1, HRT was shortened from 31 to 24 h and NO3- concentration was maintained stable at 250 mg/L. Conversely, reactor 2 was operated with decreasing HRT and feed NO3- concentration, thus maintaining a stable NO3- loading rate. After approximately 80 d of incubation, nitrate removal was 88% in reactor 1 at HRT of 31 h. The highest nitrate removal achieved in reactor 2 was 80%. A HRT decrease from 31 to 24 h did not affect nitrate removal in reactor 1, whereas nitrate removal decreased to 64% in reactor 2.Moreover, the influence of heavy metals (Ni, Cu, Zn) on Fe(II)-mediated autotrophic denitrification was assessed in batch bioassays. The highest nitrate removal efficiency and rates were achieved with the Thiobacillus-dominated mixed culture, whereas Pseudogulbenkiania strain 2002 was the least effective. Cu showed to be the most inhibitory metal for mixed cultures. A lower impact was observed when Zn was supplemented. Ni showed the lowest inhibitory effect. A higher sensitivity to metal toxicity was observed for the pure cultures. Finally, the mineral characterization of the precipitates obtained in the experiments with Cu, Ni and Zn was investigated. In abiotic controls, the chemical Fe(II) oxidation resulted in hematite formation. A mixture of different Fe(III) (hydr)oxides was observed with all microbial cultures, and in particular: i) a mixture of hematite, akaganeite and/or ferrihydrite was observed in the precipitates of the experiments carried out with the Thiobacillus-dominated mixed culture; ii) on top of hematite, akaganeite and/or ferrihydrite, maghemite was identified when the T.denitrificans pure culture was used; iii) the use of the pure culture of Pseudogulbenkiania strain 2002 resulted in hematite and maghemite formation; finally, the activated sludge enrichment allowed the production of hematite and magnetite besides maghemite. No difference in the mineralogy of the precipitates was observed with the addition of Cu, whereas the addition of Ni and Zn likely stimulated the formation of maghemite. Further mineral characterization is however required
Identifer | oai:union.ndltd.org:theses.fr/2017PESC1040 |
Date | 15 December 2017 |
Creators | Kiskira, Kyriaki |
Contributors | Paris Est, Università degli studi (Cassino, Italie), Van Hullebusch, Eric, Esposito, Giovanni |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0035 seconds