• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 3
  • 2
  • Tagged with
  • 14
  • 14
  • 11
  • 10
  • 9
  • 9
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Two Stage Membrane Biofilm Reactors for Nitrification and Hydrogenotrophic Denitrification

Hwang, Jong Hyuk 09 February 2010 (has links)
Membrane biofilm reactors (MBfR) utilize membrane fibers for bubble-less transfer of gas by diffusion and provide a surface for biofilm development. Nitrogen removal was attempted using MBfR in various configurations - nitrification, denitrification and consecutive nitrification and denitrification. Effects of loading rate and dissolved oxygen on nitrification performance were primarily investigated in a stand-alone nitrifying MBfR. Specific nitrification rate increased linearly with specific loading rate, up to the load of 3.5 g N/m²d. Beyond that load, substrate diffusion limitation inhibited further increase of specific nitrification rate. 100% oxygen utilization was achievable under limited oxygen supply condition. Effects of mineral precipitation, dissolved oxygen and temperature on hydrogenotrophic denitrification were investigated in a stand-alone denitrifying MBfR. Mineral precipitation, caused by intended pH control, caused the deterioration of denitrification performance by inhibiting the diffusion of hydrogen and nitrate. Operating reactor in various dissolved oxygen conditions showed that the denitrification performance was not affected by dissolved oxygen in MBfR. Optimum temperature of the hydrogenotrophic denitrification system was around 28°C. Total nitrogen removal in a two-step MBfR system incorporating sequential nitrification and hydrogen-driven autotrophic denitrification was investigated in order to achieve nitrogen removal by autotrophic bacteria alone. Long-term stable operation, which proved difficult in previous studies due to excessive biofilm accumulation in autotrophic denitrification systems, was attempted by biofilm control. Nitrification performance was very stable throughout the experimental periods over 200 days. Performance of autotrophic denitrification was maintained stably throughout the experimental periods, however biofilm control by nitrogen sparging was required for process stability. Biofilm thickness was also stably maintained at an average of 270 µm by the gas sparging biofilm control. According to the cost analysis of denitrifying MBfR, hydrogenotrophic denitrification can be an economical tertiary treatment option compared to conventional denitrifying filter although its economic feasibility highly depends on the cost of hydrogen gas. Although this study was conducted in a lab-scale, the findings from this study can be a valuable stepping stone for larger scale application and open the door for system modifications in future.
2

Two Stage Membrane Biofilm Reactors for Nitrification and Hydrogenotrophic Denitrification

Hwang, Jong Hyuk 09 February 2010 (has links)
Membrane biofilm reactors (MBfR) utilize membrane fibers for bubble-less transfer of gas by diffusion and provide a surface for biofilm development. Nitrogen removal was attempted using MBfR in various configurations - nitrification, denitrification and consecutive nitrification and denitrification. Effects of loading rate and dissolved oxygen on nitrification performance were primarily investigated in a stand-alone nitrifying MBfR. Specific nitrification rate increased linearly with specific loading rate, up to the load of 3.5 g N/m²d. Beyond that load, substrate diffusion limitation inhibited further increase of specific nitrification rate. 100% oxygen utilization was achievable under limited oxygen supply condition. Effects of mineral precipitation, dissolved oxygen and temperature on hydrogenotrophic denitrification were investigated in a stand-alone denitrifying MBfR. Mineral precipitation, caused by intended pH control, caused the deterioration of denitrification performance by inhibiting the diffusion of hydrogen and nitrate. Operating reactor in various dissolved oxygen conditions showed that the denitrification performance was not affected by dissolved oxygen in MBfR. Optimum temperature of the hydrogenotrophic denitrification system was around 28°C. Total nitrogen removal in a two-step MBfR system incorporating sequential nitrification and hydrogen-driven autotrophic denitrification was investigated in order to achieve nitrogen removal by autotrophic bacteria alone. Long-term stable operation, which proved difficult in previous studies due to excessive biofilm accumulation in autotrophic denitrification systems, was attempted by biofilm control. Nitrification performance was very stable throughout the experimental periods over 200 days. Performance of autotrophic denitrification was maintained stably throughout the experimental periods, however biofilm control by nitrogen sparging was required for process stability. Biofilm thickness was also stably maintained at an average of 270 µm by the gas sparging biofilm control. According to the cost analysis of denitrifying MBfR, hydrogenotrophic denitrification can be an economical tertiary treatment option compared to conventional denitrifying filter although its economic feasibility highly depends on the cost of hydrogen gas. Although this study was conducted in a lab-scale, the findings from this study can be a valuable stepping stone for larger scale application and open the door for system modifications in future.
3

Sulfur-based denitrification of organic-deficient, acidic, low temperature and nickel contaminated waters in fluidized-bed reactors / Traitement des eaux usées par dénitrification autotrophe impliquant le cycle du soufre en réacteurs à lit fluidisé : influence du pH, de la température et de la concentration en nickel

Di Capua, Francesco 16 December 2016 (has links)
La dénitrification autotrophe à l’aide de composés réduit de soufre est une approche intéressante pour le traitement biologique des contaminations azotées et des effluents pauvre en matière organique. La dénitrification autotrophe utilise des composés inorganiques comme sources d'énergie et de carbone. L'absence de matière organique élimine le besoin de post-traitements pour éliminer l'excès de carbone organique et limite la formation sous-produits d’oxydation dans le cadre de la production d’eau potable. Les eaux usées provenant des industries métallurgiques et minières ont généralement un faible pH, des températures basses et des concentrations élevées en métaux lourds. L'élimination biologique de l'azote est un défi parce que les bactéries dénitrifiantes prospèrent habituellement à pH neutre et à températures ambiantes (20-30 °C).Le but de cette thèse était de développer un procédé robuste de dénitrification à base de soufre dans des bioréacteurs à pH acide, températures psychrophiles (< 20 °C) et concentrations élevées en nickel. Le procédé a été optimisé au préalable avec des essais biologiques étudiant l'influence de la source de soufre (S2O32-, S0 biogénique et le synthétisé chimiquement), de la taille des particules de S0 (poudre et lentilles), de la culture dénitrifiante (cultures pures et mixtes de Thiobacillus) et de la température (6-30 °C) sur la cinétique de la dénitrification. L'utilisation de S2O32- et d’une culture pure de T. denitrificans ont permis d’atteindre des rendements de dénitrification les plus élevés. Le soufre élémentaire biogénique a été testé pour la première fois comme donneur d'électrons pour la dénitrification, montrant des taux de dénitrification 1.7 fois plus élevés que ceux obtenue avec de la poudre de S0 synthétisé chimiquement. Les taux de la dénitrification avec le S2O32- augmentent exponentiellement avec la température et les calculs avec l'équation d'Arrhenius donnent une énergie d'activation apparente Ea de 76.6 kJ/mol.Deux réacteurs à lit fluidisé (FBR) ont été utilisés pour étudier la dénitrification avec S2O32- à différents pH (5.25-7.00) et températures décroissantes (3-20 °C). Des rendements de dénitrification > 99% ont été observés pour eaux usés présentant des pH compris entre 5.75 et 5.30. L'addition d'une unité de carbonatation fournissant au biofilm du CO2 comme source de carbone supplémentaire, permettant une dénitrification complète à un pH de 4.75. Dans le même FBR, des taux de charge d'azote élevés (jusqu'à 3,3 kg N-NO3-/m3 d) avec le thiosulfate ont été maintenu à des températures aussi basses que 3 °C. L'impact de deux composés du Nickel (NiEDTA2- et NiCl2) sur la dénitrification à base de soufre a été étudiée dans deux FBR en parallèle à 20 (± 2) °C et des concentrations de nickel variant dans la gamme de 5-200 mg Ni/L. Dans des bioessais discontinues, 25-100 mg Ni/L de NiCl2 ont inhibée l'élimination de NO3- de 7-16%, alors qu'aucune inhibition n'a été observée avec NiEDTA2-. L'EDTA non complexée a inhibée la dénitrification à des concentrations supérieures à 100 mg/L. Les deux composés de Ni ont montré aucun effet négatif sur la dénitrification en FBR aux concentrations testées. Le bilan massique du nickel, la caractérisation de la phase solide et la modélisation thermodynamique ont révélé que des précipités de nickel ont été principalement éliminés avec l'effluent. Les phosphates, sulfures et oxydes de nickel ont été déterminés comme les principaux précipités de nickel et étaient principalement amorphe.Les FBRs se sont révélés être bioprocédés robustes pour l'élimination de l'azote à pH acide, pour des températures psychrophiles et des concentrations élevées de nickel. Les résultats de cette étude sont d'un grand intérêt pour le traitement des eaux souterraines et minières contaminés par les nitrates dans les régions froides du monde et également pour les eaux usées industrielles acides et chargées en métaux lourds / Autotrophic denitrification driven by reduced sulfur compounds is a promising and cost-effective biological nitrogen removal process, recommended for the treatment of organic-deficient waters, e.g. groundwater and several industrial wastewaters. Autotrophic denitrifiers utilize inorganic compounds as sources of energy and carbon. The lack of organics eliminates the need of post-treatments to remove excess organic carbon and limits the formation of harmful organic byproducts (e.g. trihalomethanes, THM), resulting in a clean and safe treatment also for drinking water. Wastewaters from mining and metal-finishing industry commonly feature low pH and temperatures as well as high heavy metal concentrations. Nitrogen removal from these waters is a technical challenge, since denitrifying bacteria usually thrives at circumneutral pH and ambient temperatures (20-30°C).The aim of this study was to develop a robust and efficient sulfur-based denitrification bioreactor process able to tolerate acidic pH, psychrophilic temperatures (< 20°C) and high nickel concentrations. The process was preliminary optimized in batch bioassays investigating the influence of sulfur source, i.e. thiosulfate (S2O32-) and biogenic and chemically synthesized elemental sulfur (S0), S0 particle size (powder and lentils), denitrifying culture (pure and mixed cultures of Thiobacillus) and temperature (6-30°C) on denitrification kinetics. The use of S2O32- and a pure culture of Thiobacillus denitrificans resulted in the highest denitrification rates. Biogenic S0 was tested for the first time as electron donor for autotrophic denitrification, showing 1.7-fold faster NO3- removal than that achieved with chemically synthesized S0 powder. The rates of thiosulfate-driven denitrification exponentially increased with temperature, being modeled according to the Arrhenius equation with an apparent activation energy Ea of 76.6 kJ/mol and a temperature coefficient Q10 of 3.0.Fluidized-bed reactors (FBRs) were used to investigate continuous thiosulfate-driven denitrification under decreasing feed pH (5.25-7.00) and temperatures (3-20°C). Denitrification efficiencies > 99% were observed at feed and effluent pH as low as 5.75 and 5.30, respectively. At lower feed pH values, the denitrification activity rapidly decreased due to an inorganic carbon deficiency. The addition of a carbonation unit providing CO2 as supplemental carbon source to the FBR biofilm allowed complete denitrification even at a pH of 4.75. In the same FBR, high-rate (up to 3.3 kg N-NO3-/m3 d) thiosulfate-driven denitrification was maintained at temperatures as low as 3°C. The impact of two Ni compounds, i.e. NiEDTA2- and NiCl2, on sulfur-based denitrification was investigated in a parallel FBR at 20 (±2)°C and feed Ni concentrations in the range of 5-200 mg Ni/L. Preliminary batch bioassays were carried out to assess Ni and free EDTA toxicity on sulfur-based denitrification. In batch bioassays, 25-100 mg Ni/L of NiCl2 inhibited NO3- removal by 7-16%, whereas no inhibition was observed with NiEDTA2-. Free EDTA inhibited sulfur-based denitrification at concentrations exceeding 100 mg/L. Both Ni compounds showed no detrimental effects on sulfur-based denitrification in FBR at the tested concentrations. Nickel mass balance, solid-phase characterization and thermodynamic modeling revealed that nickel precipitates were mostly washed out with the effluent, due to the slow Ni precipitation kinetics and high upflow velocities in the FBR. Nickel phosphate, sulfide and oxide were indicated as the main nickel precipitates and were mostly amorphous.FBRs were shown to be powerful and robust biofilm systems for nitrogen removal under acidic pH, psychrophilic temperatures and high nickel concentrations. The results of this study are of great interest for the treatment of NO3- contaminated ground and mining waters in cold regions (e.g. Canadian and Scandinavian regions) as well as acidic and heavy-metal-laden wastewaters
4

Control Of Hydrogen Sulfide Emissionsusing Autotrophic Denitrificationlandfill Biocovers

Sungthong, Daoroong 01 January 2010 (has links)
Hydrogen sulfide (H2S), a major odorous component emitted from construction and demolition debris landfills, has received increasing attention. Besides its unpleasant odor, long-term exposure to a very low concentration of H2S can cause a public health issue. Although cover materials such as soil and compost are recommended to be used routinely to control an odor problem from the landfills, the problem still remains. Autotrophic denitrification may have environmental applications including treatment of water, groundwater, wastewater or gaseous streams contaminated with sulfur and/or nitrogen compounds. However, there have been no studies reported in the literature on H2S removal using autotrophic denitrification from landfills. This study, therefore, investigated the application of autotrophic denitrification incorporated into landfill covers in order to evaluate the feasibility of controlling H2S emissions generated from landfills. Research was investigated by two techniques, microcosm and laboratory-scale column studies. The microcosm experiments were conducted to evaluate the kinetics of autotrophic denitrification in various cover materials with H2S-nitrate as electron donor-acceptor couple. Cover materials including soil, compost and sand were tested and nitrate was added. Based on the microcosm study results, the addition of nitrate into soil and compost can stimulate indigenous autotrophic denitrifying bacteria which are capable of H2S oxidation biologically under anoxic conditions. Results also demonstrated that some amount of H2S can be removed physically and chemically by soil or compost. There was no H2S removal observed in sand microcosms. Rapid H2S oxidation to sulfate was achieved, especially in soil. Zero-order kinetics described the H2S oxidation rate in soil and compost microcosms. The rates of sulfide oxidation under autotrophic denitrification in soil and compost were 2.57 mg H2S/d-g dry soil and 0.17 mg H2S/d-g dry compost, respectively. To further explore H2S removal in a landfill biocover, two sets of column experiments were run. The first set of columns contained seven cm of soil. The autotrophic column was prepared with 1.94 mg KNO3/g dry soil; an identical control column was prepared without nitrate. A gas stream was introduced to the columns with a H2S concentration of 930 ppm. The second set contained seven cm of soil, with both an autotrophic (0.499 mg KNO3/g dry soil) and a control column. Influent H2S concentration was 140 ppm for the second set. Column studies supported the results of microcosm studies; removal of H2S was observed in all columns due to the capacity for soil to absorb H2S, however autotrophic columns removed significantly more. The higher concentration of H2S resulted in partial oxidation to elemental sulfur, while sulfate was found at levels predicted by stoichiometric relationships at the lower concentration. H2S oxidation in the column with higher loading was found to follow zero-order kinetics. The rate of H2S oxidation was 0.46 mg H2S removed/d-g dry soil. Economic comparison of cover systems including autotrophic denitrification, soil amended with lime, fine concrete, and compost covers were analyzed. Based on a case-study landfill area of 0.04 km2, the estimated H2S emissions of 80,900 kg over the 15-year period and costs of active cover system components (ammonium nitrate fertilizer, lime, concrete and compost), autotrophic denitrification cover was determined to be the most cost-effective method for controlling H2S emissions from landfills.
5

Utilização de efluente nitrificado para oxidação de sulfeto oriundos do efluente de tratamento anaeróbio de esgotos sanitários

Cabral, Luciana Leôncio Bertino 27 February 2018 (has links)
Submitted by Jean Medeiros (jeanletras@uepb.edu.br) on 2018-05-18T13:18:03Z No. of bitstreams: 1 PDF - Luciana Leôncio Bertino Cabral.pdf: 26933991 bytes, checksum: 16582e8219a683ebcba28f0ec330a8cd (MD5) / Made available in DSpace on 2018-05-18T13:18:04Z (GMT). No. of bitstreams: 1 PDF - Luciana Leôncio Bertino Cabral.pdf: 26933991 bytes, checksum: 16582e8219a683ebcba28f0ec330a8cd (MD5) Previous issue date: 2018-02-27 / The present study had, as main objective, to evaluate the oxidation of sulfides usin g nitrified effluent as an electron acceptor in anaerobic reactors treating sanitary sewage. This process was possible because the interactions between the carbon, nitrogen and sulfur cycle that allow the practical use of the fundamentals already known about the process of denitrification and oxidation of sulfides at simultaneous moments. The experiments were perform in a Hybrid Anaerobic Reactor (HAR) with a useful volume of 60 liters and TDH of 24 hours. The HAR consists of a UASB reactor in the lower part and in the middle part an Anaerobic Filter, with polyurethane foam used as a support form. An equilibrium tank, designed at the top of the HAR, sent the effluent into an Intermittent Flux of Sand’s Filter - FaFint, allowing the formation of the nitrified effluent, with the purpose of recirculating this material to the anaerobic phase of the system. The research was developed in four phases. In the first phase, the HAR nourished with 100% of sewer from the Campina Grande – PB city, with the purpose of comparing its results with the other phases, in which different flows in each phase of the operation recirculated from the effluent produced in the FaFint. During phase 2, the HAR received a flow of 83% of sewer and 17% of nitrified effluent, in phase 3 the flow changed to 64% of raw sewer and 33% of the effluent recirculated from FaFint. While in phase 4, the ratio applied was 50% crude sewer and 50% nitrified effluent. Concentrations of sulfate, sulfide, elemental sulfur, nitrate, nitrite, organic nitrogen and ammoniacal nitrogen were monitored, as well as other parameters of interest. The results showed that the operational conditions imposed during phase 4 allowed the accumulation of 41% of the oxidized forms of sulfur in the anaerobic phase, 31% in the form of sulfate and 10% in the form of elemental sulfur. The addition of a higher amount of nitrified effluent in the HAR also favored the denitrification process, showing 38% of the nitrogen forms removed during the anaerobic stage and a 46% removal of nitrogen in the final effluent. Thus, it was concluded that the use of nitrate and nitrite can effectively treat the stinks generated by the treatment of anaerobic wastewater systems. / A presente pesquisa teve por principal objetivo, avaliar a oxidação de sulfetos utilizando efluente nitrificado como aceptor de elétrons em reatores anaeróbios tratando esgoto sanitário. Esse processo foi possível devido as interações entre o ciclo do carbono, nitrogênio e enxofre que permitem a utilização prática dos fundamentos já conhecidos sobre o processo de desnitrificação e oxidação de sulfetos em momentos simultâneos. Os experimentos foram realizados em um Reator Anaeróbio Híbrido – RAH – com volume útil de 60 litros e TDH de 24 horas. O RAH é constituído por um reator UASB na parte inferior e na parte intermediária um Filtro Anaeróbio, com espuma de poliuretano utilizado como meio suporte. Um tanque de equilíbrio, projetado na parte superior do RAH, lançava o efluente em um Filtro de Areia de Fluxo intermitente – FaFint, permitindo a formação do efluente nitrificado, com o propósito de realizar a recirculação desse material para a fase anaeróbia do sistema. A pesquisa foi desenvolvida em quatro fases. Na primeira fase o RAH foi alimentado com 100% de esgotos da cidade de Campina Grande – PB, teve a finalidade de comparar seus resultados com as demais fases, na qual, fora recirculado vazões, distintas em cada fase de operação, do efluente produzido no FaFint. Durante a fase 2, o RAH recebeu uma vazão de 83% de esgoto e 17% de efluente nitrificado, na fase 3 a vazão foi alterada para 64% de esgoto bruto e 33% de efluente recirculado do FaFint. Enquanto que na fase 4, a razão aplicada foi de 50% de esgoto bruto e 50% efluente nitrificado. Foram monitoradas as concentrações de sulfato, sulfeto, enxofre elementar, nitrato, nitrito, nitrogênio orgânico e nitrogênio amoniacal, além de outros parâmetros de interesse. Os resultados obtidos mostraram que, as condições operacionais impostas no decorrer da fase 4, possibilitaram o acúmulo de 41% das formas oxidadas de enxofre na fase anaeróbia, sendo 31% na forma de sulfato e 10% na forma de enxofre elementar. A adição de uma maior quantidade de efluente nitrificado no RAH, também favoreceu o processo de desnitrificação, apresentando remoção de 38% das formas de nitrogênio durante a etapa anaeróbia e 46% na eficiência de remoção de nitrogênio no efluente final. Dessa forma, foi concluído que o uso de nitrato e nitrito, podem tratar de forma eficaz os problemas de mal odor gerado pelo tratamento de sistemas anaeróbios de águas residuárias.
6

Utilização de sulfeto como doador de elétrons para a desnitrificação autotrófica aplicada ao tratamento de esgoto sanitário / Utilization of sulfide as electron donor in autotrophic denitrification applied to treatment of domestic sewage

Moraes, Bruna de Souza 20 February 2009 (has links)
A presente pesquisa teve, por principal objetivo, avaliar a viabilidade da desnitrificação autotrófica, empregando sulfeto como doador de elétrons, aplicada a efluentes de reatores anaeróbios tratando esgoto sanitário. Estudos anteriores indicam que o sulfeto presente na fase líquida de efluentes e no biogás pode ser utilizado como doador de elétrons para a desnitrificação. Porém, há poucas informações sobre as interações entre os ciclos do carbono, nitrogênio e enxofre neste processo que permitam a utilização prática dos fundamentos já conhecidos sobre a desnitrificação na presença de sulfeto. Neste trabalho, realizaram-se ensaios de desnitrificação na presença de sulfeto, a fim de se avaliar o potencial de uso desse composto como doador de elétrons. Inicialmente, foram utilizados frascos de 1 L contendo biomassa imobilizada em espuma de poliuretano, alimentados com meio sintético nitrificado contendo sulfeto como doador e nitrito e nitrato como receptores de elétrons. Variou-se a concentração de sulfeto, obtendo-se diferentes relações N/S. Constatou-se desnitrificação completa de ambos os receptores estudados; entretanto, isto só ocorreu com estabilidade para relações N/S inferiores à relação estequiométrica baseada nas reações químicas correspondentes, isto é, quando foi aplicado sulfeto em excesso. Os resultados mostraram que a oxidação total ou parcial dos compostos de enxofre no processo depende da relação N/S, e a velocidade de consumo de nitrato foi maior que a de nitrito. Posteriormente, realizaram-se novos ensaios semelhantes ao anterior, porém, a alimentação consistiu na mistura do efluente sintético nitrificado a efluente de reator anaeróbio tratando água residuária de abatedouro de aves, e o único receptor de elétrons aplicado foi nitrato. Neste caso, foi constatada desnitrificação completa na relação N/S correspondente à estequiometria relativa a sulfeto e nitrato. A cinética de remoção de nitrogênio seguiu modelo de decaimento exponencial de primeira ordem; entretanto, houve limitação à transferência de massa intraparticular e na fase líquida, fato que caracterizou os modelos ajustados como sendo de primeira ordem. As velocidades específicas aparentes obtidas na primeira fase foram próximas de 15 mgN/gSSV.h, tanto com a aplicação de nitrato, quanto de nitrito como receptores de elétrons. Na segunda fase, a máxima velocidade específica aparente de remoção de nitrato foi da ordem de 6 mgN/gSSV.h. / The feasibility of autotrophic denitrification of effluent from anaerobic reactor treating domestic sewage using sulfide as electron donor was evaluated. Prior researches reveals sulfide into liquid phase of effluents and biogas can be utilized as electron donor for denitrification. However, information about the interaction between carbon, nitrogen and sulfur cycles in this process are few to permit practice utilization of known fundamentals about denitrification in presence of sulfide. In this work, laboratory tests of denitrification in the presence of sulfide were carried out to evaluate potential employ of this compound as electron donor. Initially, 1 L flasks with immobilized biomass in polyurethane foam was fed with synthetic nitrified wastewater containing sulfide as donor and nitrite e nitrate as electron acceptors. Sulfide concentration was diversified to obtain different N/S ratios. Complete denitrification occurred with nitrate and nitrite; nevertheless, it was observed in a stable way only for N/S ratios smaller than stoichiometric rate based in the corresponding chemistry reactions, that is, when applied excess of sulfide. The results showed that total or partial sulfur compounds oxidation depends on N/S ratio and the nitrate removal rate was bigger than nitrite removal rate. Afterward, new assays were carried out in the same way. However, the flasks were fed with synthetic nitrified wastewater mixed to effluent from anaerobic reactor treating bird slaughterhouse wastewater, and nitrate was the only electron acceptor applied. In this case, complete denitrification was evidenced for stoichiometric N/S ratio relating to sulfide and nitrate. Nitrogen removal kinetic followed exponential decay model of first order; however, this behavior was due to mass transfer limitation in the liquid phase and intraparticular. Apparent specific rates of nitrogen removal found in the first phase were nearby 15 mgN/gSSV.h, with nitrate as well as nitrite application. In the second phase, maxima apparent specific rate of nitrogen removal in nitrate form was about 6 mgN/gSSV.h.
7

Remoção de matéria orgânica residual e nitrogênio de efluente de reator UASB de indústria de insumos para ração animal em reator de leito estruturado / Residual organic matter and nitrogen removal from UASB reactor effluent of raw materials industry for animal food in a structured-bed reactor

Almeida, Ricardo Gabriel Bandeira de 07 October 2016 (has links)
O objetivo do presente trabalho foi avaliar o desempenho de um reator de leito fixo e fluxo ascendente &#40;RLFFA&#41; em escala de bancada submetido à baixa aeração e recirculação. O reator foi utilizado como um sistema de pós-tratamento do efluente de indústria de fabricação de ração animal &#40;INCOFAP&#41; a partir de resíduos de abatedouro de aves, caracterizado por elevada carga de nitrogênio amoniacal. Para tanto, o RLFFA foi avaliado quanto à remoção da fração remanescente de matéria orgânica e de nitrogênio do efluente do reator UASB instalado na indústria. O RLFFA foi operado em condições mesofílicas &#40;30&#176;C&#41; e tinha volume total de 11,5 L e volume útil de 6,1 L, com leito estruturado composto por 13 estruturas cilíndricas &#40;3 cm de diâmetro&#41; de espuma de poliuretano, dispostas verticalmente no interior do reator. O reator apresentou sistema de recirculação interna, com razão de recirculação igual a 3, suficiente para garantir a mistura completa. O sistema foi operado em três condições distintas, que foram denominadas de fases, todas com tempo de detenção hidráulica &#40;TDH&#41; de 24 horas e concentração de oxigênio dissolvido próxima a 1,0 mg.L-1. Nas fases 1 e 2, o RLFFA foi alimentado com 20&#37; de efluente do UASB diluídos em água, e a alimentação da Fase 3 foi com 10&#37; de efluente. As relações DQO/N para as Fases de 1 a 3 foram de, respectivamente, 0,28, 0,41 e 0,26. Na Fase 1, a alcalinidade foi mantida em concentração estequiométrica para a ocorrência da nitrificação total, enquanto nas fases 2 e 3 a alcalinidade foi adicionada em excesso. As melhores eficiências de remoção de N-total e DQO foram obtidas na Fase 1, com respectivamente, 48 &#177; 24&#37; e 63 &#177; 20&#37;, atingindo remoção máxima de N-total de 79&#37; e 92&#37; para DQO. As análises estatísticas demonstraram independência entre a remoção de DQO e a remoção de N-total, e com demanda de doador de elétrons para desnitrificação heterotrófica via nitrato superior à DQO removida, indicando a ocorrência de vias complementares. A desnitrificação via nitrito e a desnitrificação autotrófica foram observadas nos ensaios cinéticos de desnitrificação via nitrito e teste de atividade para desnitrificação autotrófica utilizando sulfeto como doador de elétrons. A modelagem para qualidade da água do rio Chibarro&#40; local de lançamento do efluente da empresa INCOFAP&#41; utilizando uma modificação do modelo de Streeter-Phelps, indicou que o cenário com a adoção do reator estudado no presente trabalho para tratamento do efluente da INCOFAP permitiu reduzir o impacto para a qualidade da água do rio Chibarro ao se comparar ao sistema atual de tratamento do efluente da empresa INCOFAP. Entretando, ainda faz-se necessária a elevação da eficiência de remoção de N-total no sistema, para atingir a concentração máxima de N-amoniacal permitida de 20 mg.L-1 para o efluente para compatibilização com a capacidade de autodepuração do rio Chibarro. / The objective of this study was to evaluate the performance of a bench scale up-flow fixedbed reactor &#40;UFBR&#41; subjected to low aeration and effluent recirculation.The reactor was used as a post-treatment system of effluent from animal food plant &#40;INCOFAP&#41; using poultry slaughterhouse wastes, characterized by high ammoniacal nitrogen load rate.Therefore, the UFBR was evaluated in respect to residual organic matter and nitrogen removal of industrys UASB reactor effluent. The UFBR was operated in mesophilic conditions &#40;30&#176;C&#41; and it had a total volume of 11.5 L and a working volume of 6.1 L, with a structured bed composed by 13 polyurethane foam vertical cylindrical structures &#40;3 cm of diameter&#41; inside the reactor. The reactor was provided with internal recirculation system with recirculation ratio of 3, suficiente to guarantee a complete mixture. The system was operated in three different phases, with hydraulic retention time &#40;HRT&#41;of 24 hours and dissolved oxygen concentration close to 1.0 mg.L-1.On Phases 1 and 2, the UFBR was fed with 20&#37; of UASB effluent diluted in water,and the Phase 3 was fed with 10&#37; of effluent. On phases 1 to 3 COD/N ratios were, respectively, 0.28, 0.41 and 0.26. The alkalinity on Phase 1 was maintained on stoichiometric concentration to total nitrification, while in phases 2 and 3 excess alkalinity was added. The best total nitrogen and COD removal efficiencies were obtained in Phase 1, with respectively, 48 &#177; 24&#37; and 63 &#177; 20&#37; , reaching maximum total nitrogen removal of 79&#37; and 92&#37; for COD. Statistical analysis demonstrated independency between COD and total nitrogen removal, and with higher electron donor demand for nitrate denitrification than COD removal, indicating the occurrence of complementary paths. The nitrite denitrification and autotrophic denitrification were noted in kinetics experiments and activity tests for autotrophic denitrification using sulfide as source of electron donors. The modeling for Chibarro river water quality &#40;site of INCOFAPs effluent release&#41; , using a modified Streeter-Phelps model, indicated the scenario with the adoption of the studied reactor on this work for INCOFAP&#39;s effluent treatment provided the reduction of the impact on Chibarros water quality in comparison with the current effluent treatment of INCOFAP. However, it is still necessary an increase on system denitrification efficiency to reach the maximum ammoniacal nitrogen concentration allowed of 20 mg.L-1 for the effluent to make compatible with de selfpurification of Chibarro river.
8

Desnitrificação autotrófica com o uso de sulfeto e integração com o processo de nitrificação em um único reator / Autotrophic denitrification with sulphide and the use of integration with the process of nitrification in a single reactor

Moraes, Bruna de Souza 23 March 2012 (has links)
A remoção de nitrogênio acoplada à oxidação de sulfeto pode ser uma opção adequada para o pós-tratamento de efluentes de reatores anaeróbios, os quais contêm nitrogênio amoniacal, que deve ser nitrificado, e sulfeto, que poderia ser utilizado como doador de elétrons endógeno para a desnitrificação autotrófica. Com base nessa constatação, esta pesquisa propôs a aplicação da nitrificação e desnitrificação autotrófica acoplada à oxidação de sulfeto, em um único reator, para a remoção de nitrogênio de efluentes de reatores anaeróbios tratando esgoto sanitário. Visto que existem lacunas na literatura referente ao processo desnitrificante autotrófico citado, as bases teóricas para a determinação das condições operacionais partiram da caracterização cinética e de aspectos fundamentais da desnitrificação autotrófica com uso de sulfeto como doador de elétrons. Numa primeira etapa, avaliou-se o efeito da concentração de sulfeto na desnitrificação, com uso de nitrato e nitrito como receptores de elétrons, em reatores verticais de leito fixo. Os resultados revelaram que compostos intermediários de enxofre foram principalmente formados quando se aplicou excesso de sulfeto, fato que foi mais evidente com o uso de nitrato. Evidências visuais sugeriram que enxofre elementar foi o principal intermediário formado, o qual também estava sendo utilizado quando aplicadas concentrações estequiométricas de sulfeto relativas a nitrato/nitrito. De modo geral, a desnitrificação autotrófica não foi afetada pela desnitrificação heterotrófica residual via atividade endogênica. Numa segunda etapa, determinou-se a cinética intrínseca da desnitrificação autotrófica via nitrato e nitrito com uso de diferentes concentrações de sulfeto em reatores diferenciais de leito fixo. Este bioprocesso pôde ser descrito por modelo cinético de ordem ½ para biofilmes. As constantes cinéticas variaram entre 0,425-0,658 mg N1/2 / L1/2 h para desnitrificação via nitrito e entre 0,190-0,609 mg N1/2 / L1/2 h para desnitrificação via nitrato. Neste último, o menor valor foi devido ao uso de elétrons doados a partir de compostos intermediários de enxofre formados. Numa terceira etapa, utilizou-se um reator de leito fixo operado em batelada alimentada seqüencial, com ciclos de 8 horas, submetido à aeração intermitente e empregando a desnitrificação autotrófica com uso de sulfeto presente no efluente sanitário, pré-tratado anaerobiamente, como doador de elétrons. O prévio estabelecimento da nitrificação com posterior aplicação de baixas concentrações de sulfeto foi a melhor estratégia de partida do reator. A alimentação em batelada alimentada com aplicação de sulfeto em excesso apenas nos períodos anóxicos foi a melhor estratégia de alimentação, proporcionando eficiência média de 85,7% e 53,0% para nitrificação e desnitrificação, respectivamente. O acúmulo de nitrito foi observado após aplicação de carga de choque de sulfeto, que inibiu as bactérias oxidadoras de nitrito. No entanto, houve dificuldade em se estabelecer a desnitrificação via nitrito em função da toxicidade deste composto aos organismos desnitrificantes instalados no reator. A baixa eficiência global de remoção de nitrogênio e algumas restrições operacionais indicaram que a desnitrificação autotrófica usando sulfeto em um único reator operado em bateladas seqüenciais não foi adequada para a proposta desta pesquisa. / Nitrogen removal coupled with sulfide oxidation may be suitable for the post treatment of effluents from anaerobic reactors. These effluents contain ammonium, which must be nitrified, and sulfide, which could be used as an endogenous electron donor for autotrophic denitrification. Since there are gaps in literature regarding the mentioned autotrophic denitrifying process, the theoretical basis for determination of operating conditions came from the characterization of kinetics and fundamentals aspects of autotrophic denitrification using sulfide as electron donor. In a first step, the effect of sulfide concentration on this bioprocess using nitrate and nitrite as electron acceptors in vertical fixed-bed reactors was evaluated. The results showed that intermediary sulfur compounds were mainly produced when excess of electron donor was applied, which was more evident when nitrate was used. Visual evidences suggested that elemental sulfur was the intermediary compound produced. There was also evidence that the elemental sulfur previously formed was being used when sulfide was applied in stoichiometric concentration relative to nitrate/nitrite. For all conditions assayed, autotrophic denitrification was not affected by residual heterotrophic denitrification via endogenic activity, occurring as a minor additional nitrogen removal process. In a second step, the intrinsic kinetics of sulfide-oxidizing autotrophic denitrification via nitrate and nitrite in systems containing attached cells was determined. Differential reactors were fed with nitrified synthetic domestic sewage and different sulfide concentrations. This bioprocess could be described by a half-order kinetic model for biofilms. The half-order kinetic coefficients ranged from 0.425 to 0.658 mg N1/2 / L1/2 h for denitrification via nitrite and from 0.190 to 0.609 mg N1/2 / L1/2 h for denitrification via nitrate. In this latter, the lower value was due to the use of electrons donated from intermediary sulfur compounds formed. In a third step, a sequencing fed-batch biofilm reactor of 8-h cycles was operated under intermittent aeration, applying autotrophic denitrification using sulfide present in the sanitary effluent, anaerobically pre-treated, as electron donor. The effect of the start-up period and the feeding strategy were evaluated. The previous establishment of nitrification process with subsequent application of sulfide in low concentrations was the best start-up strategy. The fed-batch mode with sulfide application in excess only in the anoxic periods was the best feeding strategy, providing average efficiencies of 85.7% and 53.0% for nitrification and denitrification, respectively. Nitrite accumulation was observed after application of shock loading of sulfide, which inhibited nitrite-oxidizing bacteria. However, it was difficult to establish denitrification via nitrite due to the toxicity of this compound to denitrifying organisms developed inside the reactor. The low overall efficiency of nitrogen removal and some operational constraints indicated that autotrophic denitrification using sulfide in a single sequencing fed-batch reactor was not suitable for the purpose of this research.
9

Desnitrificação autotrófica usando sulfeto como doador de elétrons para remoção de nitrogênio de efluentes de reatores anaeróbios utilizados no tratamento de esgotos sanitários / Autotrophic denitrification using sulfide as electron donor for nitrogen removal from anaerobically pre-treated domestic sewage

Souza, Theo Syrto Octavio de 15 April 2011 (has links)
A remoção de nitrogênio é um aspecto importante do tratamento de águas residuárias, visto que este nutriente causa diversos inconvenientes, com consequentes danos à saúde humana e ao meio ambiente. A forma mais utilizada para a remoção biológica de nitrogênio de águas residuárias é a nitrificação autotrófica seguida de desnitrificação heterotrófica. Esta última etapa necessita de doadores de elétrons orgânicos, provenientes de fontes endógenas ou exógenas. Isto pode encarecer os sistemas de tratamento que utilizam reatores anaeróbios como primeira unidade de tratamento biológico, já que os efluentes destes não possuem matéria orgânica prontamente degradável, exigindo a adição de fontes exógenas de doadores de elétrons. Neste sentido, a desnitrificação autotrófica usando compostos reduzidos de enxofre como doadores de elétrons mostra-se interessante, já que sulfetos são comumente encontrados em efluentes anaeróbios. O objetivo deste projeto de pesquisa é a avaliação da desnitrificação autotrófica usando sulfeto como doador de elétrons para remoção de nitrogênio de efluentes de reatores anaeróbios tratando esgoto sanitário. Para atingir esse objetivo, foram realizados estudos exploratórios, de viabilidade e aplicabilidade do processo. Na primeira etapa, foram operados reatores em batelada para caracterização cinética, operacional e microbiológica do processo. Na segunda etapa, utilizou-se sistema de reatores contínuos em escala de bancada para remoção de nitrogênio de esgoto sanitário sintético. Por fim, na terceira etapa foi operado sistema piloto com nova configuração para tratamento secundário e terciário de esgoto sanitário real. A ocorrência da desnitrificação autotrófica foi detectada nas duas primeiras etapas, e houve indícios de sua presença na terceira etapa da pesquisa. Na primeira etapa, nitrato e nitrito foram aplicados com sucesso como receptores de elétrons, e o processo manteve-se estável apenas quando a relação \'NO IND.X\'POT.-\'/\'S POT.2-\' apresentou valores menores do que a estequiométrica. Modelos cinéticos de ordem zero foram os que melhor se ajustaram aos dados de consumo dos receptores de elétrons, e os parâmetro máximos obtidos foram 7,05 e 5,02 mg N/h.gSSV, para nitrato e nitrito respectivamente. Análises filogenéticas revelaram a presença de organismos semelhantes a Thiobacillus denitrificans, bactéria desnitrificante quimiolitotrófica usualmente associada ao processo. Na segunda e terceira etapas, foi possível a remoção global de nitrogênio de, em média, 40% apenas com doadores de elétrons endógenos, através da nitrificação de 40 a 60% da vazão total e posterior mistura com a fração não-nitrificada. A perda de sulfeto nos reservatórios intermediários do sistema de reatores da segunda etapa foi considerada um obstáculo ao processo, que foi solucionado com a nova configuração proposta na terceira etapa e aplicada em escala piloto. Embora a gama variada de processos possíveis em seu interior não tenha sido completamente elucidada, o sistema piloto promoveu tratamento secundário e terciário de esgoto sanitário, com remoção de nitrogênio e atendimento aos padrões de emissão deste parâmetro. Os resultados obtidos na pesquisa mostraram que o processo é versátil e pode coexistir com outros processos, apresentando viabilidade e potencial no tratamento de efluentes de reatores anaeróbios utilizados no tratamento de esgotos sanitários. / Nitrogen removal is an important aspect of wastewater treatment, for this nutrient causes several issues, with damages to human health and to the environment. The most used technique for biological nitrogen removal from wastewaters is autotrophic nitrification followed by heterotrophic denitrification. The latter needs organic electron donors from endogenous or exogenous sources, which can increase treatment costs for plants that rely on anaerobic reactors as their first biological unit, since their effluents do not have enough readily biodegradable organic matter, demanding the addition of exogenous sources of electron donors. In this way, autotrophic denitrification using reduced sulfur compounds as electron donors could be an interesting alternative, for sulfides are usually present in anaerobically pre-treated effluents. The aim of this research is to evaluate autotrophic denitrification using sulfide as electron donor for nitrogen removal from anaerobically pre-treated domestic sewage. For this, exploratory, viability and applicability studies of the process were performed. In the first part of the experiments, batch assays were conducted for kinetic, operational and microbiological characterization of the process. In the second part, a bench-scale system composed of three continuous reactors was used to remove nitrogen from synthetic domestic sewage. And, finally, in the third part a pilot-scale system presenting a new configuration was operated for secondary and tertiary treatment of real domestic sewage. Autotrophic denitrification was detected in the first two parts, and there were evidences of its presence in the third part of the research. In the first part, nitrate and nitrite were applied successfully as electron acceptors, and the process remained stable only when the \'NO IND.X\'POT.-\'/\'S POT.2-\' ratio was lower than the predicted by stoichiometry. Zero-order kinetic models were the ones that best adjusted to the electron acceptors consumption data, and the maximum obtained parameters were 7.05 and 5.02 mg N/h.gVSS, for nitrate and nitrite respectively. Phylogenetic analyses indicated the presence of organisms similar to Thiobacillus denitrificans, a chemolithotrophic denitrifying bacterium usually associated to the process. In the second and third parts, an average global nitrogen removal of 40% could be achieved using endogenous electron donors only, by nitrifying 40 to 60% of the total flow and later mixing it with the remaining non-nitrified fraction. Sulfide loss in the intermediary tanks of the reactors system operated in the second part was considered an obstacle to the process, which was solved with the new pilot-scale configuration proposed in the third part of the research. Although the wide range of possible processes in its interior was not fully understood, the pilot-scale system promoted secondary and tertiary treatment of domestic sewage, removing nitrogen and obeying the emission standards for this parameter. The results obtained in this research indicated that the process is versatile and can coexist with other processes, being thus viable and presenting potential in the treatment of anaerobically pre-treated domestic sewage.
10

Utilização de sulfeto como doador de elétrons para a desnitrificação autotrófica aplicada ao tratamento de esgoto sanitário / Utilization of sulfide as electron donor in autotrophic denitrification applied to treatment of domestic sewage

Bruna de Souza Moraes 20 February 2009 (has links)
A presente pesquisa teve, por principal objetivo, avaliar a viabilidade da desnitrificação autotrófica, empregando sulfeto como doador de elétrons, aplicada a efluentes de reatores anaeróbios tratando esgoto sanitário. Estudos anteriores indicam que o sulfeto presente na fase líquida de efluentes e no biogás pode ser utilizado como doador de elétrons para a desnitrificação. Porém, há poucas informações sobre as interações entre os ciclos do carbono, nitrogênio e enxofre neste processo que permitam a utilização prática dos fundamentos já conhecidos sobre a desnitrificação na presença de sulfeto. Neste trabalho, realizaram-se ensaios de desnitrificação na presença de sulfeto, a fim de se avaliar o potencial de uso desse composto como doador de elétrons. Inicialmente, foram utilizados frascos de 1 L contendo biomassa imobilizada em espuma de poliuretano, alimentados com meio sintético nitrificado contendo sulfeto como doador e nitrito e nitrato como receptores de elétrons. Variou-se a concentração de sulfeto, obtendo-se diferentes relações N/S. Constatou-se desnitrificação completa de ambos os receptores estudados; entretanto, isto só ocorreu com estabilidade para relações N/S inferiores à relação estequiométrica baseada nas reações químicas correspondentes, isto é, quando foi aplicado sulfeto em excesso. Os resultados mostraram que a oxidação total ou parcial dos compostos de enxofre no processo depende da relação N/S, e a velocidade de consumo de nitrato foi maior que a de nitrito. Posteriormente, realizaram-se novos ensaios semelhantes ao anterior, porém, a alimentação consistiu na mistura do efluente sintético nitrificado a efluente de reator anaeróbio tratando água residuária de abatedouro de aves, e o único receptor de elétrons aplicado foi nitrato. Neste caso, foi constatada desnitrificação completa na relação N/S correspondente à estequiometria relativa a sulfeto e nitrato. A cinética de remoção de nitrogênio seguiu modelo de decaimento exponencial de primeira ordem; entretanto, houve limitação à transferência de massa intraparticular e na fase líquida, fato que caracterizou os modelos ajustados como sendo de primeira ordem. As velocidades específicas aparentes obtidas na primeira fase foram próximas de 15 mgN/gSSV.h, tanto com a aplicação de nitrato, quanto de nitrito como receptores de elétrons. Na segunda fase, a máxima velocidade específica aparente de remoção de nitrato foi da ordem de 6 mgN/gSSV.h. / The feasibility of autotrophic denitrification of effluent from anaerobic reactor treating domestic sewage using sulfide as electron donor was evaluated. Prior researches reveals sulfide into liquid phase of effluents and biogas can be utilized as electron donor for denitrification. However, information about the interaction between carbon, nitrogen and sulfur cycles in this process are few to permit practice utilization of known fundamentals about denitrification in presence of sulfide. In this work, laboratory tests of denitrification in the presence of sulfide were carried out to evaluate potential employ of this compound as electron donor. Initially, 1 L flasks with immobilized biomass in polyurethane foam was fed with synthetic nitrified wastewater containing sulfide as donor and nitrite e nitrate as electron acceptors. Sulfide concentration was diversified to obtain different N/S ratios. Complete denitrification occurred with nitrate and nitrite; nevertheless, it was observed in a stable way only for N/S ratios smaller than stoichiometric rate based in the corresponding chemistry reactions, that is, when applied excess of sulfide. The results showed that total or partial sulfur compounds oxidation depends on N/S ratio and the nitrate removal rate was bigger than nitrite removal rate. Afterward, new assays were carried out in the same way. However, the flasks were fed with synthetic nitrified wastewater mixed to effluent from anaerobic reactor treating bird slaughterhouse wastewater, and nitrate was the only electron acceptor applied. In this case, complete denitrification was evidenced for stoichiometric N/S ratio relating to sulfide and nitrate. Nitrogen removal kinetic followed exponential decay model of first order; however, this behavior was due to mass transfer limitation in the liquid phase and intraparticular. Apparent specific rates of nitrogen removal found in the first phase were nearby 15 mgN/gSSV.h, with nitrate as well as nitrite application. In the second phase, maxima apparent specific rate of nitrogen removal in nitrate form was about 6 mgN/gSSV.h.

Page generated in 0.3399 seconds