• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Breakthrough behavior of H2S removal with an iron oxide based CG-4 adsorbent in a fixed-bed reactor

Wang, De Ming 21 October 2008
Abstract Hydrogen sulfide (H2S) is an environmentally hazardous, corrosive, and toxic gas, mostly generated in gas and oil industry. For small-scale natural gas processing sites (less than 10 tonne S/day), the use of regenerable iron oxide adsorbent to adsorb H2S from natural gas is still an economical and effective method. The objective of this research project was to understand the performance of an iron oxide adsorbent, recently emerging in the Canadian market, in removing H2S from gas streams. To accomplish this, the breakthrough behaviors of H2S adsorption in a fixed-bed reactor under elevated pressures were studied. The effects of variations in superficial velocity from 0.09 m/s to 0.26 m/s, operating pressure from 4 to 50 atm absolute, and the height of the fixed-bed from 11.7 cm to 24.5 cm on breakthrough curves and sulfur loading were investigated. In all the experiments, the H2S concentration profiles of the exiting gas from the reactor were measured until the bed was saturated. It was found that the shape of the breakthrough curves depend on the superficial velocity and the inlet H2S concentration in gas streams. Under both higher superficial velocity and higher inlet H2S concentration, the shape of the breakthrough curve becomes steeper. The sulfur loading of the adsorbent depends on the superficial velocity, the inlet H2S concentration in gas streams, and the bed height. The sulfur loading decreases as the superficial velocity and the inlet H2S concentration increase, but increases as the bed height increases. The change of operating pressure does not have a significant effect on the shape of the breakthrough curve or sulfur loading of the adsorbent. The investigation was also extended using the regenerated adsorbents. A mathematical formula was developed to describe the breakthrough curves.
2

Breakthrough behavior of H2S removal with an iron oxide based CG-4 adsorbent in a fixed-bed reactor

Wang, De Ming 21 October 2008 (has links)
Abstract Hydrogen sulfide (H2S) is an environmentally hazardous, corrosive, and toxic gas, mostly generated in gas and oil industry. For small-scale natural gas processing sites (less than 10 tonne S/day), the use of regenerable iron oxide adsorbent to adsorb H2S from natural gas is still an economical and effective method. The objective of this research project was to understand the performance of an iron oxide adsorbent, recently emerging in the Canadian market, in removing H2S from gas streams. To accomplish this, the breakthrough behaviors of H2S adsorption in a fixed-bed reactor under elevated pressures were studied. The effects of variations in superficial velocity from 0.09 m/s to 0.26 m/s, operating pressure from 4 to 50 atm absolute, and the height of the fixed-bed from 11.7 cm to 24.5 cm on breakthrough curves and sulfur loading were investigated. In all the experiments, the H2S concentration profiles of the exiting gas from the reactor were measured until the bed was saturated. It was found that the shape of the breakthrough curves depend on the superficial velocity and the inlet H2S concentration in gas streams. Under both higher superficial velocity and higher inlet H2S concentration, the shape of the breakthrough curve becomes steeper. The sulfur loading of the adsorbent depends on the superficial velocity, the inlet H2S concentration in gas streams, and the bed height. The sulfur loading decreases as the superficial velocity and the inlet H2S concentration increase, but increases as the bed height increases. The change of operating pressure does not have a significant effect on the shape of the breakthrough curve or sulfur loading of the adsorbent. The investigation was also extended using the regenerated adsorbents. A mathematical formula was developed to describe the breakthrough curves.
3

TRATAMENTO BIOLÓGICO DE ESGOTO SANITÁRIO COMPOSTO POR REATOR ANAERÓBIO DE LEITO FLUIDIZADO E FILTRO PERCOLADOR COM INSERÇÃO DE UMA ETAPA INTERMEDIÁRIA DE AERAÇÃO

Machado Filho, José Geraldo 13 March 2015 (has links)
Made available in DSpace on 2017-07-20T13:41:56Z (GMT). No. of bitstreams: 1 Jose Geraldo Machado Filho.pdf: 1790649 bytes, checksum: 7797b84b3e71af503db5a84d51bfed6a (MD5) Previous issue date: 2015-03-13 / Bad smell originated from the sewage biological treatment results in disturbance to the communities situated around these stations and is harmful to the operators’ health. This study presents results obtained from the monitoring of a sewage station treatment aiming to reduce the organic load and total suspended solids from the final effluent as well as the bad smell caused mainly by the hydrogen sulfide. The system comprised a Upflow Anaerobic Sludge Blanked (UASB), a percolator biological filter and secondary decanter. The study was divided into five phases and operated for 271 days. Phase 1 was composed of anaerobic reactor, aeration tank, percolator biological filter and secondary decanter; phase 2 had anaerobic reactor, aeration tank, percolator biological filter, secondary decanter and sludge recirculation; phase 3 had anaerobic reactor, aeration tank, secondary decanter and mud recirculation; phase 4 was composed of anaerobic reactor, aeration tank, percolator biological filter, secondary decanter, mud recirculation and final effluent recirculation, and phase 5 comprised anaerobic reactor, aeration tank with polyurethane foam, percolator biological filter, secondary decanter, mud recirculation and final effluent recirculation. All phases presented efficacy to remove oxygen chemical demand and oxygen biochemical demand ranging from 81 to 94% and total suspended solids from 71 to 92%. The sulfide removal, in the form of hydrogen sulfide in aqueous medium in the aeration tank presented 44,7% efficacy, the aeration tank release of sulphydric gas presented 70% reduction and up to 95% reduction of hydrogen sulfide in the air measured in the station area. The innovation in this operational system of treatment was the development of an aeration system, situated between the anaerobic reactor and the percolator biological filter, comprising a compressor with 1,132.7 L.min-1 air flow maximum capacity and ten fine microbubble plate diffusers, with 152.0 mm diameter and 0.5 to 1.5 mm porosity, installed 1m deep, inside the aeration tank, with a 15.0 cm distance between them, 300 L.min-1 total air flow and keeping the average dissolved oxygen concentration in the tank from 0.5 to 5.3 mg.L-1. / O mal cheiro inerente ao processo de tratamento biológico de esgoto traz incômodo às comunidades situadas no entorno das estações e danos à saúde dos operadores. O presente trabalho apresenta os resultados do monitoramento de uma estação de tratamento de esgoto com o objetivo de redução da carga orgânica e sólidos suspensos totais do efluente final além da redução de maus odores causados principalmente pelo sulfeto de hidrogênio. O sistema é composto por reator anaeróbio de leito fluidizado, filtro biológico percolador e decantador secundário. O estudo foi dividido em cinco fases, foi operado durante 271 dias, onde a fase I foi composta por reator anaeróbio, filtro biológico percolador e decantador secundário, fase II reator anaeróbio, tanque de aeração, filtro biológico percolador, decantador secundário e recirculação do lodo, fase III reator anaeróbio, tanque de aeração, decantador secundário e recirculação do lodo, fase IV reator anaeróbio, tanque de aeração, filtro biológico percolador, decantador secundário, recirculação do lodo e recirculação do efluente final e fase V reator anaeróbio, tanque de aeração com espuma de poliuretano, filtro biológico percolador, decantador secundário, recirculação do lodo e recirculação do efluente final. Em todas as fases foram observadas eficiências na remoção da demanda química de oxigênio e demanda bioquímica de oxigênio de 81 a 94% e de sólidos suspensos totais de 71% a 92%. A remoção de sulfetos, na forma de sulfeto de hidrogênio no meio aquoso no tanque de aeração, apresentou uma eficiência de 44,7%, a liberação de gás sulfídrico do tanque de aeração teve uma redução de 70 % e diminuição de até 95% de sulfeto de hidrogênio no ar medido na área da estação. A inovação neste sistema operacional de tratamento foi o desenvolvimento de um sistema de aeração, situado entre o Reator anaeróbio e o filtro biológico percolador, constituído por um compressor com capacidade máxima de vazão de ar de 1.132,7 L.min-1 e dez difusores de microbolhas finas tipo prato, com diâmetro de 152,0 mm e porosidade de 0,5 a 1,5 mm, instalados a 1 m de profundidade, dentro do tanque de aeração, com espaçamento de 15,0 cm entre eles, com vazão total de ar de 300 L.min-1, mantendo a concentração de oxigênio dissolvido no tanque em média entre 0,5 a 5,3 mg.L-1.
4

Utilização de efluente nitrificado para oxidação de sulfeto oriundos do efluente de tratamento anaeróbio de esgotos sanitários

Cabral, Luciana Leôncio Bertino 27 February 2018 (has links)
Submitted by Jean Medeiros (jeanletras@uepb.edu.br) on 2018-05-18T13:18:03Z No. of bitstreams: 1 PDF - Luciana Leôncio Bertino Cabral.pdf: 26933991 bytes, checksum: 16582e8219a683ebcba28f0ec330a8cd (MD5) / Made available in DSpace on 2018-05-18T13:18:04Z (GMT). No. of bitstreams: 1 PDF - Luciana Leôncio Bertino Cabral.pdf: 26933991 bytes, checksum: 16582e8219a683ebcba28f0ec330a8cd (MD5) Previous issue date: 2018-02-27 / The present study had, as main objective, to evaluate the oxidation of sulfides usin g nitrified effluent as an electron acceptor in anaerobic reactors treating sanitary sewage. This process was possible because the interactions between the carbon, nitrogen and sulfur cycle that allow the practical use of the fundamentals already known about the process of denitrification and oxidation of sulfides at simultaneous moments. The experiments were perform in a Hybrid Anaerobic Reactor (HAR) with a useful volume of 60 liters and TDH of 24 hours. The HAR consists of a UASB reactor in the lower part and in the middle part an Anaerobic Filter, with polyurethane foam used as a support form. An equilibrium tank, designed at the top of the HAR, sent the effluent into an Intermittent Flux of Sand’s Filter - FaFint, allowing the formation of the nitrified effluent, with the purpose of recirculating this material to the anaerobic phase of the system. The research was developed in four phases. In the first phase, the HAR nourished with 100% of sewer from the Campina Grande – PB city, with the purpose of comparing its results with the other phases, in which different flows in each phase of the operation recirculated from the effluent produced in the FaFint. During phase 2, the HAR received a flow of 83% of sewer and 17% of nitrified effluent, in phase 3 the flow changed to 64% of raw sewer and 33% of the effluent recirculated from FaFint. While in phase 4, the ratio applied was 50% crude sewer and 50% nitrified effluent. Concentrations of sulfate, sulfide, elemental sulfur, nitrate, nitrite, organic nitrogen and ammoniacal nitrogen were monitored, as well as other parameters of interest. The results showed that the operational conditions imposed during phase 4 allowed the accumulation of 41% of the oxidized forms of sulfur in the anaerobic phase, 31% in the form of sulfate and 10% in the form of elemental sulfur. The addition of a higher amount of nitrified effluent in the HAR also favored the denitrification process, showing 38% of the nitrogen forms removed during the anaerobic stage and a 46% removal of nitrogen in the final effluent. Thus, it was concluded that the use of nitrate and nitrite can effectively treat the stinks generated by the treatment of anaerobic wastewater systems. / A presente pesquisa teve por principal objetivo, avaliar a oxidação de sulfetos utilizando efluente nitrificado como aceptor de elétrons em reatores anaeróbios tratando esgoto sanitário. Esse processo foi possível devido as interações entre o ciclo do carbono, nitrogênio e enxofre que permitem a utilização prática dos fundamentos já conhecidos sobre o processo de desnitrificação e oxidação de sulfetos em momentos simultâneos. Os experimentos foram realizados em um Reator Anaeróbio Híbrido – RAH – com volume útil de 60 litros e TDH de 24 horas. O RAH é constituído por um reator UASB na parte inferior e na parte intermediária um Filtro Anaeróbio, com espuma de poliuretano utilizado como meio suporte. Um tanque de equilíbrio, projetado na parte superior do RAH, lançava o efluente em um Filtro de Areia de Fluxo intermitente – FaFint, permitindo a formação do efluente nitrificado, com o propósito de realizar a recirculação desse material para a fase anaeróbia do sistema. A pesquisa foi desenvolvida em quatro fases. Na primeira fase o RAH foi alimentado com 100% de esgotos da cidade de Campina Grande – PB, teve a finalidade de comparar seus resultados com as demais fases, na qual, fora recirculado vazões, distintas em cada fase de operação, do efluente produzido no FaFint. Durante a fase 2, o RAH recebeu uma vazão de 83% de esgoto e 17% de efluente nitrificado, na fase 3 a vazão foi alterada para 64% de esgoto bruto e 33% de efluente recirculado do FaFint. Enquanto que na fase 4, a razão aplicada foi de 50% de esgoto bruto e 50% efluente nitrificado. Foram monitoradas as concentrações de sulfato, sulfeto, enxofre elementar, nitrato, nitrito, nitrogênio orgânico e nitrogênio amoniacal, além de outros parâmetros de interesse. Os resultados obtidos mostraram que, as condições operacionais impostas no decorrer da fase 4, possibilitaram o acúmulo de 41% das formas oxidadas de enxofre na fase anaeróbia, sendo 31% na forma de sulfato e 10% na forma de enxofre elementar. A adição de uma maior quantidade de efluente nitrificado no RAH, também favoreceu o processo de desnitrificação, apresentando remoção de 38% das formas de nitrogênio durante a etapa anaeróbia e 46% na eficiência de remoção de nitrogênio no efluente final. Dessa forma, foi concluído que o uso de nitrato e nitrito, podem tratar de forma eficaz os problemas de mal odor gerado pelo tratamento de sistemas anaeróbios de águas residuárias.

Page generated in 0.0436 seconds