L'utilisation de micronageurs hélicoidaux capables de se mouvoir dans des liquides à faible nombre de Reynolds trouve son intérêt dans beaucoup d'applications: de tâches in-vitro dans des laboratoires sur puce (transport et tri de micro-objets; assemblage de micro-composants...), à des applications in-vivo en médecine mini-invasive (livraison interne et ciblée de médicaments, curiethérapie, thermothérapie...); grâce à leur dimensions microscopiques et agilité permettant l'accès à des endroits normalement très restreints. Plusieurs types de nageurs hélicoïdaux actionnés magnétiquement possédant divers paramètres géométriques, formes de tête et positions de la partie magnétique ont été proposés dans de précédents travaux. Cependant, l'influence de tous ces paramètres n'a pas clairement été étudiée. À notre connaissance, les micronageurs hélicoïdaux dans l'état de l'art sont principalement contrôlés en boucle ouverte, en raison de la complexité de la commande du champ magnétique actionnant la propulsion, et du nombre limité de retours ayant des critères satisfaisants. Cette thèse vise à comparer les performances de déplacement de nageurs hélicoïdaux avec des conceptions différentes a n d'améliorer leur design et de les caractériser et réaliser un asservissement visuel de nageur hélicoïdal. Pour se faire, des nageurs hélicoïdaux de tailles millimétriques ont été conçus et sont mis en conditions à faible nombre de Reynolds. La conception de ces "millinageurs" servira de base à la conception de micronageurs. Une commande boucle fermée par retour visuel de l'orientation d'un micronageur hélicoïdal dans un espace 3D, et un suivi de trajectoires sur plan horizontal ont été effectués. Cette méthode de commande sera par la suite appliquée à des micronageurs hélicoïdaux. / Helical microswimmers capable of propulsion at low Reynolds numbers have been proposed for numerous applications, ranging from in vitro tasks on lab-on-a-chip (e.g. transporting and sorting micro objects; mechanical components micro assembly...) to in vivo applications for minimally invasive medicine (e.g. targeted drug delivery; brachytherapy; hyperthermia...), due to their micro sizes and accessibility to tiny and clustered environments. Several kinds of magnetically actuated helical swimmers with di erent geometry parameters, head shapes, and magnetic positioning have been proposed in prior works. However, the in uence of the geometry parameters, the head shape and the magnetic positioning (head, coated tail...) has not been clearly studied. As far as we know, the existing helical microswimmers are primarily open-loop controlled, due to the complexity of the control of the magnetic eld actuating the helical propulsion, and the limited number of feedback options processing the required precision. This thesis aims to compare the swimming performances of helical swimmers with di erent designs to further improve their design and to characterize their swimming properties and realize a visual servo control of helical swimmers. Scaled-up helical microswimmers at the millimeter scale are designed and swim at low Reynolds numbers. The design of these scaled-up helical microswimmers can be a guideline for the micro-fabrication of helical microswimmers. A visual servo control of the scaled-up helical microswimmer orientation in the 3D space, and a path following on the horizontal plane have been realized. The control method will be applied on helical microswimmers in future works.
Identifer | oai:union.ndltd.org:theses.fr/2014PA066670 |
Date | 13 March 2014 |
Creators | Xu, Tiantian |
Contributors | Paris 6, Hwang, Gilgueng, Régnier, Stéphane, Andreff, Nicolas |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0026 seconds