Return to search

MAPPING UML DIAGRAMS TO THE REACTIVE OBJECT LANGUAGE (REBECA)

Unified Modeling Language (UML) is a de-facto standard modeling language with an extensive syntax and notations that can be used to model systems of any kind. However, being a general-purpose language, its semantics are intrinsically under-specified and broad to leave a room for different interpretations. This, in general, hinders the ability to perform formal verification of models produced with a specific domain in mind. In these cases, it is usually more suitable to map the UML models to other domains, where modeling concepts have stricter semantics. Notably, Reactive Objects Language (Rebeca) is an actor-based language with a formal foundation and formal verification support. This paper aims to identify a subset of UML modeling concepts compatible with the domain of reactive and distributed systems as modeled in Rebeca. In this respect, this work proposes a conceptual mapping between a sub-portion of UML and Rebeca, with the goal of enabling formal verification early in the design process. In particular, we investigate Rebeca syntax, and for each Rebeca concept, we provide the corresponding concept in the UML, as part of an iterative process. This process ends when all Rebeca concepts are exhausted and comprehensive mapping procedure emerges. Additionally, validation is an important part of this paper as it aims to establish confidence in the developed mapping procedure (in post-conversion validation) and avoid doing the transformation if the design is not compatible with the mapping procedure (in pre-conversion validation). As part of the pre-conversion validation, in order to establish the compatibility with the mapping procedure, we provide an extensive list of correctness attributes. As part of the post-conversion validation, the mapping procedure is validated by transformation on the provided examples. The results of this transformation show the wide range applicability of the mapping procedure and serve as an assertion of its comprehensiveness.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:mdh-44137
Date January 2019
CreatorsDjukanovic, Vladimir
PublisherMälardalens högskola, Akademin för innovation, design och teknik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0017 seconds