Return to search

Characterisation of a developer’s experience fields using topic modelling

Finding the most relevant candidate for a position represents an ubiquitous challenge for organisations. It can also be arduous for a candidate to explain on a concise resume what they have experience with. Due to the fact that the candidate usually has to select which experience to expose and filter out some of them, they might not be detected by the person carrying out the search, whereas they were indeed having the desired experience. In the field of software engineering, developing one's experience usually leaves traces behind: the code one produced. This project explores approaches to tackle the screening challenges with an automated way of extracting experience directly from code by defining common lexical patterns in code for different experience fields, using topic modeling. Two different techniques were compared. On one hand, Latent Dirichlet Allocation (LDA) is a generative statistical model which has proven to yield good results in topic modeling. On the other hand Non-Negative Matrix Factorization (NMF) is simply a singular value decomposition of a matrix representing the code corpus as word counts per piece of code.The code gathered consisted of 30 random repositories from all the collaborators of the open-source Ruby-on-Rails project on GitHub, which was then applied common natural language processing transformation steps. The results of both techniques were compared using respectively perplexity for LDA, reconstruction error for NMF and topic coherence for both. The two first represent how well the data could be represented by the topics produced while the later estimates the hanging and fitting together of the elements of a topic, and can depict human understandability and interpretability. Given that we did not have any similar work to benchmark with, the performance of the values obtained is hard to assess scientifically. However, the method seems promising as we would have been rather confident in assigning labels to 10 of the topics generated. The results imply that one could probably use natural language processing methods directly on code production in order to extend the detected fields of experience of a developer, with a finer granularity than traditional resumes and with fields definition evolving dynamically with the technology.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-171946
Date January 2020
CreatorsDéhaye, Vincent
PublisherLinköpings universitet, Institutionen för datavetenskap
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0018 seconds