Dans cette thèse, nous proposons de nouvelles méthodes d'estimation et de test par optimisation des Divergences entre mesures pour des modèles paramétriques discrets ou continus, pour des modèles à rapport de densités semi-paramétriques et pour des modèles non paramétriques restreints par des contraintes linéaires. Les méthodes proposées sont basées sur une nouvelle représentation des Divergences entre mesures. Nous montrons que les méthodes du maximum de vraisemblance paramétrique et du maximum de vraisemblance empirique sont des cas particuliers correspondant au choix de la Divergence de Kullback-Leibler modifiée, et que le choix d'autres types de Divergences mène à des estimateurs ayant des propriétés similaires voire meilleurs dans certains cas. De nombreuses perspectives concernant le problème du choix de la Divergence sont notées.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00004069 |
Date | 17 November 2003 |
Creators | Keziou, Amor |
Publisher | Université Pierre et Marie Curie - Paris VI |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0022 seconds