The AASHTO 1993 Guide for Design of Pavement Structures is the most widely used pavement design method in both Canada and the United States, and is currently used by the Ministry of Transportation of Ontario (MTO) for both flexible and rigid pavement design. Despite its widespread use, the AASHTO 1993 pavement design method has significant limitations stemming primarily from the limited range of conditions observed at the AASHTO Road Test from which its empirical relationships were derived. The Mechanistic-Empirical Pavement Design Guide (MEPDG) was developed to address the perceived limitations of the AASHTO 1993 Guide. Although the MEPDG provides a rational pavement design procedure with a solid foundation in engineering mechanics, a considerable amount of work is required to adapt and validate the MEPDG to Ontario conditions.
The purpose of this research was to conduct a comparative analysis of Ontario structural pavement designs using the AASHTO 1993 Guide for Design of Pavement Structures and the Mechanistic-Empirical Pavement Design Guide. Historical flexible, rigid, and asphalt overlay pavement designs completed using the AASHTO 1993 pavement design method for the MTO were evaluated using a two-stage procedure. First, the nationally-calibrated MEPDG pavement distress models were used to predict the performance of the pavements designed using the AASHTO 1993 method. The purpose of this stage of the analysis was to determine whether the two methods predicted pavement performance in a consistent manner across a range of design conditions typical of Ontario. Finally, the AASHTO 1993 and MEPDG methods were compared based on the thickness of the asphalt concrete or Portland cement concrete layers required to satisfy their respective design criteria.
The results of the comparative analysis demonstrate that the AASHTO 1993 method generally over-predicted pavement performance relative to the MEPDG for new flexible pavements and asphalt overlays of flexible pavements. The MEPDG predicted that most of the new flexible pavements and asphalt overlays of flexible pavements designed using the AASHTO 1993 method would fail primarily due to permanent deformation and / or roughness. The asphalt layer thicknesses obtained using the MEPDG exceeded the asphalt layer thicknesses obtained using the AASHTO 1993 method, and a poor correlation was observed between the asphalt layer thicknesses obtained using the two methods. Many of the new flexible pavements and asphalt overlays of existing flexible pavements could not be re-designed to meet the MEPDG performance criteria by increasing the asphalt layer thickness.
The results of the comparative analysis showed that the AASHTO 1993 method generally under-predicted rigid pavement performance relative to the MEPDG, although the results varied widely between alternative rigid pavement designs. The AASHTO 1993 rigid pavement designs that the MEPDG predicted would not meet the rigid pavement performance criteria generally failed due to pavement roughness. A very poor correlation was observed between the Portland cement concrete layer thicknesses obtained using the MEPDG and AASHTO 1993 design methods. The MEPDG predicted thinner Portland cement concrete layer thicknesses than the AASHTO 1993 design method for most of the rigid pavement designs.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OWTU.10012/8047 |
Date | January 2013 |
Creators | Boone, Jonathan |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Thesis or Dissertation |
Page generated in 0.0105 seconds