The study of topological phases in condensed matter physics has seen remarkable advancements, primarily focusing on systems with a well-defined bulk and boundary. However, the emergence of topological phenomena on self-similar systems, characterized by the absence of a clear distinction between bulk and boundary, presents a fascinating challenge. This thesis focuses on the topological phases on self-similar systems, shedding light on their unique properties through the lens of adiabatic charge pumping. We observe that the spectral flow in these systems exhibits striking qualitative distinctions from that of translationally invariant non-interacting systems subjected to a perpendicular magnetic field. We show that the instantaneous eigenspectra can be used to understand the quantization of the charge pumped over a cycle, and hence to understand the topological character of the system. Furthermore, we establish a correspondence between the local contributions to the Hall conductivity and the spectral flow of edge-like states. We also find that the edge-like states can be approximated as eigenstates of the discrete angular-momentum operator, with their chiral characteristics stemming from this unique perspective. We also investigate the effect of local structure on the topological phases on self-similar structures embedded in two dimensions. We study a geometry dependent model on two self-similar structures having different coordination numbers, constructed from the Sierpinski gasket. For different non-spatial symmetries present in the system, we numerically study and compare the phases on both structures. We characterize these phases by the localization properties of the single-particle states, their robustness to disorder, and by using a real-space topological index. We find that both structures host topologically nontrivial phases and the phase diagrams are different on the two structures, emphasizing the interplay between non-spatial symmetries and the local structure of the self-similar unit in determining topological phases.
Furthermore, we demonstrate the presence of topologically ordered chiral spin liquid on fractals by extending the Kitaev model to the Sierpinski Gasket. We show a way to perform the Jordan-Wigner transformation to make this model exactly solvable on the Sierpinski Gasket. This system exhibits a fractal density of states for Majorana modes and showcases a transition from a gapped to a gapless phase. Notably, the gapped phase features symmetry-protected Majorana corner modes, while the gapless phase harbors robust zero-energy and low-energy self-similar Majorana edge-like modes. We also study the vortex excitations, characterized by remarkable localization properties even in small fractal generations. These localized excitations exhibit anyonic behavior, with preliminary calculations hinting at their fundamental differences from Ising anyons observed in the Kitaev model on a honeycomb lattice.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:90418 |
Date | 11 March 2024 |
Creators | Sarangi, Saswat |
Contributors | Nielsen, Anne E. B., Moessner, Roderich, Budich, Jan C., Technische Universität Dresden, Max-Planck Institute for the Physics of Complex Systems |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0027 seconds