Return to search

Non-invasive detection algorithm of thermal comfort based on computer vision

The waste of building energy consumption is a major challenge in the world. And the real-time detection of human thermal comfort is an effective way to meet this issue. As mentioned in name, it means to detect the human’s comfort level in real-time and non-invasively. However, due to the various factors such as individual difference of thermal comfort, elements related to climatic (temperature, humidity, illumination, etc.) and so on, there is still a long way to implement this strategy in real life. From another perspective, the current HVAC (heating, ventilating and air-conditioning) systems cannot provide flexible interaction channels to adjust atmosphere, and naturally fails to satisfy requirements of users. All of them indicate the necessity to develop a detection method for human thermal comfort. In this paper, a non-invasion detection method toward human thermal comfort is proposed from two perspectives: macro human postures and skin textures. In posture part, OpenPose is used for analyzing the position coordinates of human body key points’ in images, for example, elbow, knee, and hipbone, etc. And the results of analyzing would be interpreted from the term of thermal comfort. In skin textures, deep neural network is used to predict the temperature of human skins via images. Based on Fanger’s theory of thermal comfort, the results of both parts are satisfying: subjects’ postures can be captured and interpreted into different thermal comfort level: hot, cold and comfort. And the absolute error of prediction from neurons network is less than 0.125 degrees centigrade which is the equipment error of thermometer used in data acquisition. With the solution proposed by this paper, it is promising to non-invasively detect the thermal comfort level of users from postures and skin textures. Finally, theconclusion and future work are discussed in final chapter. / Slöseriet med att bygga energiförbrukningen är en stor utmaning i världen. Ochdetektering av mänsklig termisk komfort i realtid är ett effektivt sätt att lösaproblemet. Som nämns i namn betyder det att detektera människans komfortnivå i realtid och icke-invasivt. På grund av de olika faktorerna som individuell skillnad i termisk komfort, är emellertid faktorer som är relaterade till klimat (temperatur, luftfuktighet, belysning etc.) det fortfarande en lång väg att implementera denna strategi i verkligheten. Från ett annat perspektiv kan nuvarande system för uppvärmning, ventilation och luftkonditionering inte tillhandahålla flexibla interaktionskanaler för att anpassa atmosfären och naturligtvis misslyckas till nöjda krav från användarna. Alla indikerar nödvändigheten av att utveckla en detekteringsmetod för mänsklig termisk komfort. I detta dokument föreslås en ickeinvasion detekteringsmetod mot mänsklig termisk komfort från två perspektiv: makro mänskliga hållningar och hudtexturer. I hållningspartiet används OpenPose för att analysera positionskoordinaterna för kroppens huvudpunkter i bilder, till exempel armbåge, knä och höftben osv. Och resultaten av analysen skulle tolkas från termen av termisk komfort. I hudtexturer används djupt neuralt nätverk för att förutse temperaturen på mänskliga skinn via bilder. Baserat på Fangers teorin om värmekomfort är resultaten av båda delarna tillfredsställande: subjektens hållningar kan fångas och tolkas till olika värmekomfortnivåer: varm, kall och komfort. Och det absoluta felet av prediktering från neuronnätverket är mindre än 0,125 grader Celsius, vilket är utrustningsfelet hos termometern som används vid datainsamling. Med lösningar i detta papper är det lovande att detektera användarens värmekomfortnivå fritt från invändningar och hudtexturer. Slutligen diskuteras slutsatserna och detframtida arbetet i sista kapitlet.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-241082
Date January 2018
CreatorsZhang, Lichang
PublisherKTH, Skolan för elektroteknik och datavetenskap (EECS)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EECS-EX ; 2018:734

Page generated in 0.0022 seconds