Orientador: Caio Lucidius Naberezny Azevedo / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-20T09:23:25Z (GMT). No. of bitstreams: 1
Santos_JoseRobertoSilvados_M.pdf: 2068782 bytes, checksum: f8dc91d2f7f6091813ba229dc12991f4 (MD5)
Previous issue date: 2012 / Resumo: Uma das suposições dominantes nos modelos de resposta ao item (MRI) é a suposição de normalidade simétrica para modelar o comportamento dos traços latentes. No entanto, tal suposição tem sido questionada em vários trabalhos como, por exemplo, nos trabalhos de Micceri (1989) e Bazán et.al (2006). Recentemente Azevedo et.al (2011) propuseram um MRI com distribuição normal assimétrica centralizada para os traços latentes, considerando a estrutura de um único grupo de indivíduos. No presente trabalho fazemos uma extensão desse modelo para o caso de grupos múltiplos. Desenvolvemos dois algoritmos MCMC para estimação dos parâmetros utilizando a estrutura de dados aumentados para representar a função de resposta ao item (FRI), veja Albert (1992). O primeiro é um amostrador de Gibbs com passos de Metropolis-Hastings. No segundo utilizamos representações estocásticas (gerando uma estrutura hierárquica) das densidades a priori dos traços latentes e parâmetros populacionais conseguindo, assim, formas conhecidas para todas as distribuições condicionais completas, o que nos possibilitou desenvolver o amostrador de Gibbs completo. Comparamos esses algoritmos utilizando como critério o tamanho efetivo de amostra, veja Sahu (2002). O amostrador de Gibbs completo obteve o melhor desempenho. Também avaliamos o impacto do número de respondentes por grupo, número de itens por grupo, número de itens comuns, assimetria da distribuição do grupo de referência e priori, na recuperação dos parâmetros. Os resultados indicaram que nosso modelo recuperou bem todos os parâmetros, principalmente, quando utilizamos a priori de Jeffreys. Além disso, o número de itens por grupo e o número de examinados por grupo, mostraram ter um alto impacto na recuperação dos traços latentes e parâmetros dos itens, respectivamente. Analisamos um conjunto de dados reais que apresenta indícios de assimetria na distribuição dos traços latentes de alguns grupos. Os resultados obtidos com o nosso modelo confirmam a presença de assimetria na maioria dos grupos. Estudamos algumas medidas de diagnóstico baseadas na distribuição preditiva de medidas de discrepância adequadas. Por último, comparamos os modelos simétrico e assimétrico utilizando os critérios sugeridos por Spiegelhalter et al. (2002). O modelo assimétrico se ajustou melhor aos dados segundo todos os critérios / Abstract: An usual assumption for parameter estimation in the Item Response Models (IRM) is to assume that the latent traits are random variables which follow a normal distribution. However, many works suggest that this assumption does not apply in many cases. For example, the works of Micceri (1989) and Bazán (2006). Recently Azevedo et.al (2011) proposed an IRM with skew-normal distribution under the centred parametrization for the latent traits, considering one single group of examinees. In the present work, we developed an extension of this model to account for multiple groups. We developed two MCMC algorithms to parameter estimation using the augmented data structure to represent the Item response function (IRF), see Albert (1992). The First is a Metropolis-Hastings within Gibbs sampling. In the second, we use stochastic representations (creating a hierarchical structure) in the prior distribution of the latent traits and population parameters. Therefore, we obtained known full conditional distributions, which enabled us to develop the full Gibbs sampler. We compared these algorithms using the effective sample size criteria, see Sahu (2002). The full Gibbs sampling presented the best performance. We also evaluated the impact of the number of examinees per group, number of items per group, number of common items, priors and asymmetry of the reference group, on the parameter recovery. The results indicated that our approach recovers properly all parameters, mainly, when we consider the Jeffreys prior. Furthermore, the number of items per group and the number of examinees per group, showed to have a high impact on the recovery of the true of latent traits and item parameters, respectively. We analyze a real data set in which we found an evidence of asymmetry in the distribution of latent traits of some groups. The results obtained with our model confirmed the presence of asymmetry in most groups. We studied some diagnostic measures based on predictive distribution of appropriate discrepancy measures. Finally, we compared the symmetric and asymmetric models using the criteria suggested by Spiegelhalter et al. (2002). The asymmetrical model fits better according to all criteria / Mestrado / Estatistica / Mestre em Estatística
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.unicamp.br:REPOSIP/306791 |
Date | 20 August 2018 |
Creators | Santos, José Roberto Silva dos, 1984- |
Contributors | UNIVERSIDADE ESTADUAL DE CAMPINAS, Azevedo, Caio Lucidius Naberezny, 1979-, Migon, Helio dos Santos, Bolfarine, Heleno |
Publisher | [s.n.], Universidade Estadual de Campinas. Instituto de Matemática, Estatística e Computação Científica, Programa de Pós-Graduação em Estatística |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | 128 p. : il., application/pdf |
Source | reponame:Repositório Institucional da Unicamp, instname:Universidade Estadual de Campinas, instacron:UNICAMP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.002 seconds