Return to search

Engineering the human vitamin D receptor to bind a novel small molecule: investigating the structure-function relationship between human vitamin d receptor and various ligands

The human vitamin D receptor (hVDR) is a member of the nuclear receptor superfamily, involved in calcium and phosphate homeostasis; hence implicated in a number of diseases, such as Rickets and Osteoporosis. This receptor binds 1α,25-dihydroxyvitamin D3 (also referred to as 1,25(OH)2D3) and other known ligands, such as lithocholic acid. Specific interactions between the receptor and ligand are crucial for the function and activation of this receptor, as implied by the single point mutation, H305Q, causing symptoms of Type II Rickets. In this work, further understanding of the significant and essential interactions between the ligand and the receptor were deciphered, through a combination of rational and random mutagenesis. A hVDR mutant, H305F, was engineered with increased sensitivity towards lithocholic acid, with an EC50 value of 10 µM and 40 + 14 fold activation in mammalian cell assays, while maintaining wild-type activity with 1,25(OH)2D3. Furthermore, via random mutagenesis, a hVDR mutant, H305F/H397Y, was discovered to bind a novel small molecule, cholecalciferol, a precursor in the 1α,25-dihydroxyvitamin D3 biosynthetic pathway, which does not activate wild-type hVDR. This variant, H305F/H397Y, binds and activates in response to cholecalciferol concentrations as low as 100 nM, with an EC50 value of 300 nM and 70 + 11 fold activation in mammalian cell assays.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/39580
Date12 April 2011
CreatorsOusley, Amanda
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Detected LanguageEnglish
TypeDissertation

Page generated in 0.0017 seconds