Return to search

Régression isotonique itérée

Ce travail se situe dans le cadre de la régression non paramétrique univariée. Supposant la fonction de régression à variation bornée et partant du résultat selon lequel une telle fonction se décompose en la somme d'une fonction croissante et d'une fonction décroissante, nous proposons de construire et d'étudier un nouvel estimateur combinant les techniques d'estimation des modèles additifs et celles d'estimation sous contraintes de monotonie. Plus précisément, notreméthode consiste à itérer la régression isotonique selon l'algorithme backfitting. On dispose ainsià chaque itération d'un estimateur de la fonction de régression résultant de la somme d'une partiecroissante et d'une partie décroissante.Le premier chapitre propose un tour d'horizon des références relatives aux outils cités à l'instant. Le chapitre suivant est dédié à l'étude théorique de la régression isotonique itérée. Dans un premier temps, on montre que, la taille d'échantillon étant fixée, augmenter le nombre d'itérations conduit à l'interpolation des données. On réussit à identifier les limites des termes individuels de la somme en montrant l'égalité de notre algorithme avec celui consistant à itérer la régressionisotonique selon un algorithme de type réduction itérée du biais. Nous établissons enfin la consistance de l'estimateur.Le troisième chapitre est consacré à l'étude pratique de l'estimateur. Comme augmenter le nombre d'itérations conduit au sur-ajustement, il n'est pas souhaitable d'itérer la méthode jusqu'à la convergence. Nous examinons des règles d'arrêt basées sur des adaptations de critères usuellement employés dans le cadre des méthodes linéaires de lissage (AIC, BIC,...) ainsi que des critères supposant une connaissance a priori sur le nombre de modes de la fonction de régression. Il en ressort un comportement intéressant de la méthode lorsque la fonction de régression possède des points de rupture. Nous appliquons ensuite l'algorithme à des données réelles de type puces CGH où la détection de ruptures est d'un intérêt crucial. Enfin, une application à l'estimation des fonctions unimodales et à la détection de mode(s) est proposée

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00776627
Date23 November 2012
CreatorsJégou, Nicolas
PublisherUniversité Rennes 2
Source SetsCCSD theses-EN-ligne, France
Languagefra
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0022 seconds