Spelling suggestions: "subject:"degression none paramétrique"" "subject:"degression noun paramétrique""
1 |
Régression isotonique itérée / Iterative isotonic regressionJégou, Nicolas 23 November 2012 (has links)
Ce travail se situe dans le cadre de la régression non paramétrique univariée. Supposant la fonction de régression à variation bornée et partant du résultat selon lequel une telle fonction se décompose en la somme d’une fonction croissante et d’une fonction décroissante, nous proposons de construire et d’étudier un nouvel estimateur combinant les techniques d’estimation des modèles additifs et celles d’estimation sous contraintes de monotonie. Plus précisément, notreméthode consiste à itérer la régression isotonique selon l’algorithme backfitting. On dispose ainsià chaque itération d’un estimateur de la fonction de régression résultant de la somme d’une partiecroissante et d’une partie décroissante.Le premier chapitre propose un tour d’horizon des références relatives aux outils cités à l’instant. Le chapitre suivant est dédié à l’étude théorique de la régression isotonique itérée. Dans un premier temps, on montre que, la taille d’échantillon étant fixée, augmenter le nombre d’itérations conduit à l’interpolation des données. On réussit à identifier les limites des termes individuels de la somme en montrant l’égalité de notre algorithme avec celui consistant à itérer la régressionisotonique selon un algorithme de type réduction itérée du biais. Nous établissons enfin la consistance de l’estimateur.Le troisième chapitre est consacré à l’étude pratique de l’estimateur. Comme augmenter le nombre d’itérations conduit au sur-ajustement, il n’est pas souhaitable d’itérer la méthode jusqu’à la convergence. Nous examinons des règles d’arrêt basées sur des adaptations de critères usuellement employés dans le cadre des méthodes linéaires de lissage (AIC, BIC,...) ainsi que des critères supposant une connaissance a priori sur le nombre de modes de la fonction de régression. Il en ressort un comportement intéressant de la méthode lorsque la fonction de régression possède des points de rupture. Nous appliquons ensuite l’algorithme à des données réelles de type puces CGH où la détection de ruptures est d’un intérêt crucial. Enfin, une application à l’estimation des fonctions unimodales et à la détection de mode(s) est proposée / This thesis is part of non parametric univariate regression. Assume that the regression function is of bounded variation then the Jordan’s decomposition ensures that it can be written as the sum of an increasing function and a decreasing function. We propose and analyse a novel estimator which combines the isotonic regression related to the estimation of monotonefunctions and the backfitting algorithm devoted to the estimation of additive models. The first chapter provides an overview of the references related to isotonic regression and additive models. The next chapter is devoted to the theoretical study of iterative isotonic regression. As a first step we show that increasing the number of iterations tends to reproduce the data. Moreover, we manage to identify the individual limits by making a connexion with the general property of isotonicity of projection onto convex cones and deriving another equivalent algorithm based on iterative bias reduction. Finally, we establish the consistency of the estimator.The third chapter is devoted to the practical study of the estimator. As increasing the number of iterations leads to overfitting, it is not desirable to iterate the procedure until convergence. We examine stopping criteria based on adaptations of criteria usually used in the context of linear smoothing methods (AIC, BIC, ...) as well as criteria assuming the knowledge of thenumber of modes of the regression function. As it is observed an interesting behavior of the method when the regression function has breakpoints, we apply the algorithm to CGH-array data where breakopoints detections are of crucial interest. Finally, an application to the estimation of unimodal functions is proposed
|
2 |
Régression isotonique itéréeJégou, Nicolas 23 November 2012 (has links) (PDF)
Ce travail se situe dans le cadre de la régression non paramétrique univariée. Supposant la fonction de régression à variation bornée et partant du résultat selon lequel une telle fonction se décompose en la somme d'une fonction croissante et d'une fonction décroissante, nous proposons de construire et d'étudier un nouvel estimateur combinant les techniques d'estimation des modèles additifs et celles d'estimation sous contraintes de monotonie. Plus précisément, notreméthode consiste à itérer la régression isotonique selon l'algorithme backfitting. On dispose ainsià chaque itération d'un estimateur de la fonction de régression résultant de la somme d'une partiecroissante et d'une partie décroissante.Le premier chapitre propose un tour d'horizon des références relatives aux outils cités à l'instant. Le chapitre suivant est dédié à l'étude théorique de la régression isotonique itérée. Dans un premier temps, on montre que, la taille d'échantillon étant fixée, augmenter le nombre d'itérations conduit à l'interpolation des données. On réussit à identifier les limites des termes individuels de la somme en montrant l'égalité de notre algorithme avec celui consistant à itérer la régressionisotonique selon un algorithme de type réduction itérée du biais. Nous établissons enfin la consistance de l'estimateur.Le troisième chapitre est consacré à l'étude pratique de l'estimateur. Comme augmenter le nombre d'itérations conduit au sur-ajustement, il n'est pas souhaitable d'itérer la méthode jusqu'à la convergence. Nous examinons des règles d'arrêt basées sur des adaptations de critères usuellement employés dans le cadre des méthodes linéaires de lissage (AIC, BIC,...) ainsi que des critères supposant une connaissance a priori sur le nombre de modes de la fonction de régression. Il en ressort un comportement intéressant de la méthode lorsque la fonction de régression possède des points de rupture. Nous appliquons ensuite l'algorithme à des données réelles de type puces CGH où la détection de ruptures est d'un intérêt crucial. Enfin, une application à l'estimation des fonctions unimodales et à la détection de mode(s) est proposée
|
3 |
Contribution à la régression non paramétrique avec un processus erreur d'autocovariance générale et application en pharmacocinétique / Contribution to nonparametric regression estimation with general autocovariance error process and application to pharmacokineticsBenelmadani, Djihad 18 September 2019 (has links)
Dans cette thèse, nous considérons le modèle de régression avec plusieurs unités expérimentales, où les erreurs forment un processus d'autocovariance dans un cadre générale, c'est-à-dire, un processus du second ordre (stationnaire ou non stationnaire) avec une autocovariance non différentiable le long de la diagonale. Nous sommes intéressés, entre autres, à l'estimation non paramétrique de la fonction de régression de ce modèle.Premièrement, nous considérons l'estimateur classique proposé par Gasser et Müller. Nous étudions ses performances asymptotiques quand le nombre d'unités expérimentales et le nombre d'observations tendent vers l'infini. Pour un échantillonnage régulier, nous améliorons les vitesses de convergence d'ordre supérieur de son biais et de sa variance. Nous montrons aussi sa normalité asymptotique dans le cas des erreurs corrélées.Deuxièmement, nous proposons un nouvel estimateur à noyau pour la fonction de régression, basé sur une propriété de projection. Cet estimateur est construit à travers la fonction d'autocovariance des erreurs et une fonction particulière appartenant à l'Espace de Hilbert à Noyau Autoreproduisant (RKHS) associé à la fonction d'autocovariance. Nous étudions les performances asymptotiques de l'estimateur en utilisant les propriétés de RKHS. Ces propriétés nous permettent d'obtenir la vitesse optimale de convergence de la variance de cet estimateur. Nous prouvons sa normalité asymptotique, et montrons que sa variance est asymptotiquement plus petite que celle de l'estimateur de Gasser et Müller. Nous conduisons une étude de simulation pour confirmer nos résultats théoriques.Troisièmement, nous proposons un nouvel estimateur à noyau pour la fonction de régression. Cet estimateur est construit en utilisant la règle numérique des trapèzes, pour approximer l'estimateur basé sur des données continues. Nous étudions aussi sa performance asymptotique et nous montrons sa normalité asymptotique. En outre, cet estimateur permet d'obtenir le plan d'échantillonnage optimal pour l'estimation de la fonction de régression. Une étude de simulation est conduite afin de tester le comportement de cet estimateur dans un plan d'échantillonnage de taille finie, en terme d'erreur en moyenne quadratique intégrée (IMSE). De plus, nous montrons la réduction dans l'IMSE en utilisant le plan d'échantillonnage optimal au lieu de l'échantillonnage uniforme.Finalement, nous considérons une application de la régression non paramétrique dans le domaine pharmacocinétique. Nous proposons l'utilisation de l'estimateur non paramétrique à noyau pour l'estimation de la fonction de concentration. Nous vérifions son bon comportement par des simulations et une analyse de données réelles. Nous investiguons aussi le problème de l'estimation de l'Aire Sous la Courbe de concentration (AUC), pour lequel nous proposons un nouvel estimateur à noyau, obtenu par l'intégration de l'estimateur à noyau de la fonction de régression. Nous montrons, par une étude de simulation, que le nouvel estimateur est meilleur que l'estimateur classique en terme d'erreur en moyenne quadratique. Le problème crucial de l'obtention d'un plan d'échantillonnage optimale pour l'estimation de l'AUC est discuté en utilisant l'algorithme de recuit simulé généralisé. / In this thesis, we consider the fixed design regression model with repeated measurements, where the errors form a process with general autocovariance function, i.e. a second order process (stationary or nonstationary), with a non-differentiable covariance function along the diagonal. We are interested, among other problems, in the nonparametric estimation of the regression function of this model.We first consider the well-known kernel regression estimator proposed by Gasser and Müller. We study its asymptotic performance when the number of experimental units and the number of observations tend to infinity. For a regular sequence of designs, we improve the higher rates of convergence of the variance and the bias. We also prove the asymptotic normality of this estimator in the case of correlated errors.Second, we propose a new kernel estimator of the regression function based on a projection property. This estimator is constructed through the autocovariance function of the errors, and a specific function belonging to the Reproducing Kernel Hilbert Space (RKHS) associated to the autocovariance function. We study its asymptotic performance using the RKHS properties. These properties allow to obtain the optimal convergence rate of the variance. We also prove its asymptotic normality. We show that this new estimator has a smaller asymptotic variance then the one of Gasser and Müller. A simulation study is conducted to confirm this theoretical result.Third, we propose a new kernel estimator for the regression function. This estimator is constructed through the trapezoidal numerical approximation of the kernel regression estimator based on continuous observations. We study its asymptotic performance, and we prove its asymptotic normality. Moreover, this estimator allow to obtain the asymptotic optimal sampling design for the estimation of the regression function. We run a simulation study to test the performance of the proposed estimator in a finite sample set, where we see its good performance, in terms of Integrated Mean Squared Error (IMSE). In addition, we show the reduction of the IMSE using the optimal sampling design instead of the uniform design in a finite sample set.Finally, we consider an application of the regression function estimation in pharmacokinetics problems. We propose to use the nonparametric kernel methods, for the concentration-time curve estimation, instead of the classical parametric ones. We prove its good performance via simulation study and real data analysis. We also investigate the problem of estimating the Area Under the concentration Curve (AUC), where we introduce a new kernel estimator, obtained by the integration of the regression function estimator. We prove, using a simulation study, that the proposed estimators outperform the classical one in terms of Mean Squared Error. The crucial problem of finding the optimal sampling design for the AUC estimation is investigated using the Generalized Simulating Annealing algorithm.
|
Page generated in 0.097 seconds