Στη μελέτη αυτή δεχόμεθα ως βασικές έννοιες την έννοια του συνόλου, την έννοια της συνάρτησης και την έννοια των φυσικών αριθμών. Ορίζουμε και αποδεικνύουμε ό,τι χρειάζεται από την θεωρία των συνόλων για να κατασκευάσουμε το σύστημα των ακεραίων αριθμών, το σύστημα των ρητών και τελικά το σύστημα των πραγματικών αριθμών.
Σε όλα τα παραπάνω συστήματα ορίζεται η έννοια της διάταξης και αποδεικνύεται ότι το σύστημα των ρητών αριθμών είναι ένα Αρχιμήδειο σώμα που είναι πυκνό υποσύνολο του σώματος των πραγματικών αριθμών. Εν συνεχεία αποδεικνύονται οι χαρακτηριστικές ιδιότητες του σώματος των πραγματικών αριθμών, δηλαδή η ιδιότητα της πληρότητας (κάθε ακολουθία Cauchy συγκλίνει) και η ιδιότητα του άνω φράγματος (κάθε μή κενό υποσύνολο ,που είναι φραγμένο εκ των άνω, έχει ένα ελάχιστο άνω φράγμα (supremum). Όλα τα παραπάνω και πολλά σχετικά με αυτά περιέχονται στα κεφάλαια 1 ως και 7.
Το κεφάλαιο 8 περιέχει μία συλλογή αποτελεσμάτων σχετικά με τους πληθικούς αριθμούς, οι οποίοι ορίζονται και μελετώνται στο κεφάλαιο 3. Πολλά από τα αποτελέσματα αυτά αφορούν στον πληθικό αριθμό των πραγματικών αριθμών.
Στο κεφάλαιο 9 ορίζονται όλες οι έννοιες που χρειάζονται για να γίνουν κατανοητά τα αποτελέσματα σχετικά με την θεωρία των καλώς διατεταγμένων συνόλων και την θεωρία των διατακτικών αριθμών (ordinal numbers).
Των κεφαλαίων 1, 2, 3 προτάσσεται ιστορικό σημείωμα που αφορά τις έννοιες που αναπτύσσονται σε αυτά. Ανάλογο ιστορικό σημείωμα προτάσσεται των υπολοίπων κεφαλαίων. / In this study, I acknowledge as basic meanings, the meaning of the set, the meaning of the function and the meaning of natural numbers. We define and prove whatever is needed from the theory of sets in order to construct the system of integral numbers, the system of rational numbers and ultimately the field of real numbers.
In all the above systems the meaning of arrangement is defined and it is proven that the system of rational numbers is an Archimedean field which is a dense subset of the field of real numbers. Next, the characteristic properties of the field of real numbers are proven, i.e. the property of compactness (each sequence Cauchy converges)and the property of the upper bound (each non empty subset, which is bounded from above , has a minimum upper bound (supremum). All of the above and many other things related to this are contained in chapters 1 to 7.
Chapter 8 contains a selection of results relating to cardinal numbers, which are defined and studied in chapter 3 Many of these results relate to cardinal number of reals numbers.
In chapter 9, all the meanings which are needed in order for the results relating to the theory of the well-ordered sets and the theory of ordinal numbers, to become understood are included.
Preceeding chapters 1, 2, 3 there is a historic note relating to the meanings which are developed in them. There is a corresponding historic note preceeding the rest of the chapters.
Identifer | oai:union.ndltd.org:upatras.gr/oai:nemertes:10889/863 |
Date | 27 August 2008 |
Creators | Γκίκα, Κατερίνα Ν. |
Contributors | Κοντολάτου, Αγγελική, Κοντολάτου, Αγγελική, Κασιμάτης, Νικόλαος, Παπαδοπετράκης, Ευτύχης |
Source Sets | University of Patras |
Language | gr |
Detected Language | Greek |
Type | Thesis |
Rights | 0 |
Relation | Η ΒΥΠ διαθέτει αντίτυπο της διατριβής σε έντυπη μορφή στο βιβλιοστάσιο διδακτορικών διατριβών που βρίσκεται στο ισόγειο του κτιρίου της. |
Page generated in 0.0025 seconds