Return to search

Boost the Reliability of the Linux Kernel : Debugging kernel oopses / Aider le mainteneur d'applications libres à répondre aux rapports d'erreur

Lorsqu'une erreur survient dans le noyau Linux, celui-ci émet un rapport d’erreur appelé "kernel oops" contenant le contexte d’exécution de cette erreur. Les kernel oops décrivent des erreurs réelles de Linux, permettent de classer les efforts de débogage par ordre de priorité et de motiver la conception d’outils permettant d'améliorer la fiabilité du code de Linux. Néanmoins, les informations contenues dans un kernel oops n’ont de sens que si elles sont représentatives et qu'elles peuvent être interprétées correctement. Dans cette thèse, nous étudions une collection de kernel oops provenant d'un dépôt maintenu par Red Hat sur une période de huit mois. Nous considérons l’ensemble des caractéristiques de ces données, dans quelle mesure ces données reflètent d’autres informations à propos de Linux et l’interprétation des caractéristiques pouvant être pertinentes pour la fiabilité de Linux. Nous constatons que ces données sont bien corrélées à d’autres informations à propos de Linux, cependant, elles souffrent parfois de problèmes de duplication et de manque d’informations. Nous identifions également quelques pièges potentiels lors de l'étude des fonctionnalités, telles que les causes d'erreurs fréquentes et les causes d'applications défaillant fréquemment. En outre, un kernel oops fournit des informations précieuses et de première main pour un mainteneur du noyau Linux lui permettant d'effectuer le débogage post-mortem car il enregistre l’état du noyau Linux au moment du crash. Cependant, le débogage sur la seule base des informations contenues dans un kernel oops est difficile. Pour aider les développeurs avec le débogage, nous avons conçu une solution afin d'obtenir la ligne fautive à partir d’un kernel oops, i.e., la ligne du code source qui provoque l'erreur. Pour cela, nous proposons un nouvel algorithme basé sur la correspondance de séquences approximative utilisé dans le domaine de bioinformatique. Cet algorithme permet de localiser automatiquement la ligne fautive en se basant sur le code machine à proximité de celle-ci et inclus dans un kernel oops. Notre algorithme atteint 92% de précision comparé à 26 % pour l’approche traditionnelle utilisant le débogueur gdb. Nous avons intégré notre solution dans un outil nommé OOPSA qui peut ainsi alléger le fardeau pour les développeurs lors du débogage de kernel oops. / When a failure occurs in the Linux kernel, the kernel emits an error report called “kernel oops”, summarizing the execution context of the failure. Kernel oopses describe real Linux errors, and thus can help prioritize debugging efforts and motivate the design of tools to improve the reliability of Linux code. Nevertheless, the information is only meaningful if it is representative and can be interpreted correctly. In this thesis, we study a collection of kernel oopses over a period of 8 months from a repository that is maintained by Red Hat. We consider the overall features of the data, the degree to which the data reflects other information about Linux, and the interpretation of features that may be relevant to reliability. We find that the data correlates well with other information about Linux, but that it suffers from duplicate and missing information. We furthermore identify some potential pitfalls in studying features such as the sources of common faults and common failing applications. Furthermore, a kernel oops provides valuable first-hand information for a Linux kernel maintainer to conduct postmortem debugging, since it logs the status of the Linux kernel at the time of a crash. However, debugging based on only the information in a kernel oops is difficult. To help developers with debugging, we devised a solution to derive the offending line from a kernel oops, i.e., the line of source code that incurs the crash. For this, we propose a novel algorithm based on approximate sequence matching, as used in bioinformatics, to automatically pinpoint the offending line based on information about nearby machine-code instructions, as found in a kernel oops. Our algorithm achieves 92% accuracy compared to 26% for the traditional approach of using only the oops instruction pointer. We integrated the solution into a tool named OOPSA, which would relieve some burden for the developers with the kernel oops debugging.

Identiferoai:union.ndltd.org:theses.fr/2014PA066378
Date18 December 2014
CreatorsGuo, Lisong
ContributorsParis 6, Lawall, Julia, Muller, Gilles
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0022 seconds