Mes travaux peuvent se diviser en deux thèmes : L'algèbre linéaire numérique. La théorie des opérateurs intégraux. L'algèbre linéaire numérique fut le cadre de ma thèse de doctorat, dédiée aux propriétés spectrales des opérateurs de Sylvester, endomorphismes d'espaces matriciels. J'ai tout naturellement utilisé mes connaissances, mes compétences et mon savoir faire, développés pendant ces années de formation par la recherche, pour attaquer un nouveau problème li e a une notion apparue dans les années 1990 et qui a connu un grand succès dans la communauté de l'algèbre linéaire numérique. Cette notion est celle des pseudospectres qui généralise celle des spectres dans le cadre de la théorie des perturbations. A cette notion est liée celle de rayon de stabilité. Suite a ces travaux sur les pseudospectres et ayant constat e que pour certaines matrices pathologiques, la détermination du pseudospectre était couteuse et entachées d'erreurs importantes, nous avons cherché si l'on ne pouvait pas définir d'autres généralisations du spectre plus facilement calculables. Nous avons étudié un ensemble du plan complexe, contenant les valeurs propres d'une matrice, défini comme un -voisinage des racines du polynome caractéristique. Je me suis ensuite tout naturellement tournée vers un nouveau chalenge, celui du problème polynomial de valeurs propres. Ce sujet s'est développé très récemment. Il y a des questions propres aux problèmes polynomiaux de valeurs propres qui n'ont ete posées qu' a partir des années 2000 et qui n'ont trouvées de premières réponses que cinq ans plus tard. Le domaine des problèmes polynomiaux de valeurs propres est en pleine expansion et beaucoup de problèmes restent a résoudre dans l'avenir. Parallèlement et plus directement li e aux équations matricielles, je me suis intéressée a la notion de stabilité de Lyapunov, tr es utile dans la communauté de la théorie du contrôle. Mon autre domaine de recherche concerne les équations intégrales du point de vue de l'approximation. Des méthodes de discrétisation conduisant a des matrices diagonales sont intéressantes. Ces considérations m'ont conduite à étudier l'approximation d'un équation d'opérateur intégral par une méthode d'ondelettes-vaguelettes. La difficulté de la mise en œuvre numérique m'a dirigée vers l' étude d'autres méthodes.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00867034 |
Date | 09 March 2012 |
Creators | Grammont, Laurence |
Publisher | Université Jean Monnet - Saint-Etienne |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | habilitation ࠤiriger des recherches |
Page generated in 0.0017 seconds