abstract: Non-line-of-sight (NLOS) imaging of objects not visible to either the camera or illumina-
tion source is a challenging task with vital applications including surveillance and robotics.
Recent NLOS reconstruction advances have been achieved using time-resolved measure-
ments. Acquiring these time-resolved measurements requires expensive and specialized
detectors and laser sources. In work proposes a data-driven approach for NLOS 3D local-
ization requiring only a conventional camera and projector. The localisation is performed
using a voxelisation and a regression problem. Accuracy of greater than 90% is achieved
in localizing a NLOS object to a 5cm × 5cm × 5cm volume in real data. By adopting
the regression approach an object of width 10cm to localised to approximately 1.5cm. To
generalize to line-of-sight (LOS) scenes with non-planar surfaces, an adaptive lighting al-
gorithm is adopted. This algorithm, based on radiosity, identifies and illuminates scene
patches in the LOS which most contribute to the NLOS light paths, and can factor in sys-
tem power constraints. Improvements ranging from 6%-15% in accuracy with a non-planar
LOS wall using adaptive lighting is reported, demonstrating the advantage of combining
the physics of light transport with active illumination for data-driven NLOS imaging. / Dissertation/Thesis / Masters Thesis Electrical Engineering 2019
Identifer | oai:union.ndltd.org:asu.edu/item:53639 |
Date | January 2019 |
Contributors | Chandran, Sreenithy (Author), Jayasuriya, Suren (Advisor), Turaga, Pavan (Committee member), Dasarathy, Gautam (Committee member), Arizona State University (Publisher) |
Source Sets | Arizona State University |
Language | English |
Detected Language | English |
Type | Masters Thesis |
Format | 64 pages |
Rights | http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0335 seconds