abstract: This doctoral thesis investigates the predictability characteristics of floods and flash floods by coupling high resolution precipitation products to a distributed hydrologic model. The research hypotheses are tested at multiple watersheds in the Colorado Front Range (CFR) undergoing warm-season precipitation. Rainfall error structures are expected to propagate into hydrologic simulations with added uncertainties by model parameters and initial conditions. Specifically, the following science questions are addressed: (1) What is the utility of Quantitative Precipitation Estimates (QPE) for high resolution hydrologic forecasts in mountain watersheds of the CFR?, (2) How does the rainfall-reflectivity relation determine the magnitude of errors when radar observations are used for flood forecasts?, and (3) What are the spatiotemporal limits of flood forecasting in mountain basins when radar nowcasts are used into a distributed hydrological model?. The methodology consists of QPE evaluations at the site (i.e., rain gauge location), basin-average and regional scales, and Quantitative Precipitation Forecasts (QPF) assessment through regional grid-to-grid verification techniques and ensemble basin-averaged time series. The corresponding hydrologic responses that include outlet discharges, distributed runoff maps, and streamflow time series at internal channel locations, are used in light of observed and/or reference data to diagnose the suitability of fusing precipitation forecasts into a distributed model operating at multiple catchments. Results reveal that radar and multisensor QPEs lead to an improved hydrologic performance compared to simulations driven with rain gauge data only. In addition, hydrologic performances attained by satellite products preserve the fundamental properties of basin responses, including a simple scaling relation between the relative spatial variability of runoff and its magnitude. Overall, the spatial variations contained in gridded QPEs add value for warm-season flood forecasting in mountain basins, with sparse data even if those products contain some biases. These results are encouraging and open new avenues for forecasting in regions with limited access and sparse observations. Regional comparisons of different reflectivity -rainfall (Z-R) relations during three summer seasons, illustrated significant rainfall variability across the region. Consistently, hydrologic errors introduced by the distinct Z-R relations, are significant and proportional (in the log-log space) to errors in precipitation estimations and stream flow magnitude. The use of operational Z-R relations without prior calibration may lead to wrong estimation of precipitation, runoff magnitude and increased flood forecasting errors. This suggests that site-specific Z-R relations, prior to forecasting procedures, are desirable in complex terrain regions. Nowcasting experiments show the limits of flood forecasting and its dependence functions of lead time and basin scale. Across the majority of the basins, flood forecasting skill decays with lead time, but the functional relation depends on the interactions between watershed properties and rainfall characteristics. Both precipitation and flood forecasting skills are noticeably reduced for lead times greater than 30 minutes. Scale dependence of hydrologic forecasting errors demonstrates reduced predictability at intermediate-size basins, the typical scale of convective storm systems. Overall, the fusion of high resolution radar nowcasts and the convenient parallel capabilities of the distributed hydrologic model provide an efficient framework for generating accurate real-time flood forecasts suitable for operational environments. / Dissertation/Thesis / Ph.D. Civil and Environmental Engineering 2012
Identifer | oai:union.ndltd.org:asu.edu/item:15231 |
Date | January 2012 |
Contributors | Moreno, Hernan A. (Author), Vivoni, Enrique R. (Advisor), Ruddell, Benjamin L. (Committee member), Gochis, David J. (Committee member), Mays, Larry W. (Committee member), Huang, Huei-Ping (Committee member), Arizona State University (Publisher) |
Source Sets | Arizona State University |
Language | English |
Detected Language | English |
Type | Doctoral Dissertation |
Format | 220 pages |
Rights | http://rightsstatements.org/vocab/InC/1.0/, All Rights Reserved |
Page generated in 0.0022 seconds