Return to search

Bayesian state estimation in partially observable Markov processes / Estimation bayésienne dans les modèles de Markov partiellement observés

Cette thèse porte sur l'estimation bayésienne d'état dans les séries temporelles modélisées à l'aide des variables latentes hybrides, c'est-à-dire dont la densité admet une composante discrète-finie et une composante continue. Des algorithmes généraux d'estimation des variables d'états dans les modèles de Markov partiellement observés à états hybrides sont proposés et comparés avec les méthodes de Monte-Carlo séquentielles sur un plan théorique et appliqué. Le résultat principal est que ces algorithmes permettent de réduire significativement le coût de calcul par rapport aux méthodes de Monte-Carlo séquentielles classiques / This thesis addresses the Bayesian estimation of hybrid-valued state variables in time series. The probability density function of a hybrid-valued random variable has a finite-discrete component and a continuous component. Diverse general algorithms for state estimation in partially observable Markov processesare introduced. These algorithms are compared with the sequential Monte-Carlo methods from a theoretical and a practical viewpoint. The main result is that the proposed methods require less processing time compared to the classic Monte-Carlo methods

Identiferoai:union.ndltd.org:theses.fr/2017SACLL009
Date13 December 2017
CreatorsGorynin, Ivan
ContributorsUniversité Paris-Saclay (ComUE), Pieczynski, Wojciech, Monfrini, Emmanuel
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0017 seconds