Return to search

Optimized Distribution of Strength in Buckling-Restrained Brace Frames in Tall Buildings

Nonlinear time history analysis is increasingly being used in the design of tall steel structures, but member sizes still must be determined by a designer before an analysis can be performed. Often the distribution of story strength is still based on an assumed first mode response as determined from the Equivalent Lateral Force (ELF) procedure. For tall buckling restrained braced frames (BRBFs), two questions remain unanswered: what brace distribution will minimize total brace area, while satisfying story drift and ductility limits, and is the ELF procedure an effective approximation of that distribution? In order to investigate these issues, an optimization algorithm was incorporated into the OpenSees dynamic analysis platform. The resulting program uses a genetic algorithm to determine optimum designs that satisfy prescribed drift/ductility limits during nonlinear time history analyses. The computer program was used to investigate the optimized distribution of brace strength in BRBFs with different heights. The results of the study provide insight into efficient design of tall buildings in high seismic areas and evaluate the effectiveness of the ELF procedure.

Identiferoai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-2793
Date02 July 2009
CreatorsOxborrow, Graham Thomas
PublisherBYU ScholarsArchive
Source SetsBrigham Young University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations
Rightshttp://lib.byu.edu/about/copyright/

Page generated in 0.0035 seconds