• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • 1
  • Tagged with
  • 16
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nonlinear thermomechanical analysis of structures using OpenSees

Jiang, Jian January 2013 (has links)
The behaviour of heated structures is strongly governed by thermal induced deformation and degradation of material properties. This thesis presents an augmentation of the software framework OpenSees to enable thermomechanical analysis of structures. The developments contributed to OpenSees are tested by series of benchmark cases and experimental results. OpenSees is an object-oriented, open source software framework developed at UC Berekeley for providing an advanced computational tool to simulate non-linear response of structural frames to earthquakes. OpenSees was chosen to be extended to enable the modelling of structures in fire. The development of this capability involved creating new thermal load classes to define the temperature distribution in structural members and modifying existing material classes to include temperature dependent properties according to Eurocodes. New functions were also added into the existing corotational beam/column element (2D and 3D) to apply temperature related loads. A new geometrically nonlinear shell element was created (based on the existing linear MITC4 shell element in OpenSees) using total Lagrangian formulation. Appropriate thermal load, material and section classes were also developed for enabling thermomechanical analysis using the nonlinear shell element. A number of benchmark tests were carried out to verify the performance of the new developments implemented in OpenSees. The benchmark tests involved subjecting beams and plates to a range of through depth temperature gradients with OpenSees results compared against closed form solutions. Further verification was also carried out by comparing OpenSees results with ABAQUS results. The extended OpenSees framework was also used to model experiments such as two plane steel frames at elevated temperatures, the Cardington Restrained Beam Test and the Cardington Corner Test and an earthquake damaged reinforced concrete (RC) frame subjected to a subsequent fire. The existing DruckerPrager material class in OpenSees was used to the model concrete in the composite floor in the Cardington tests and in the RC frame. The pinching material available in OpenSees was used to model the beams and columns in the RC frame to consider the cyclic degradation of strength and stiffness during the increasing cyclic displacements imposed on the RC frame before the fire. In all cases the results from OpenSees show good agreement with test data.
2

Development and application of a thermal analysis framework in OpenSees for structures in fire

Jiang, Ya-Qiang January 2013 (has links)
The last two decades have witnessed the shift of structural fire design from prescriptive approaches to performance-based approaches in order to build more advanced structures while reducing costs. However, it is recognised that the implementation of performance-based approaches requires several key elements that are currently not fully developed or understood. This research set out to address some of these issues by focusing on the development, validation and application of methodologies for accurate predictions of thermal responses of structures in fire using numerical methods. This research firstly proposed a numerical approach with the finite element and the discrete ordinates method to quantify the fire imposed radiative heat fluxes to structural members with cavity geometry. With satisfactory results from the verification and validation tests, it is used to simulate heat transfer to unprotected steel I-sections with symmetrical cavities exposed to post-flashover fires. Results show that the cavity geometry could strongly attenuate the radiative energy, while the presence of hot smoke enhances radiative transfer by emission. Average radiative fluxes for the inner surfaces of the I-sections are seen to increase with smoke opacity. In addition, the net radiative fluxes are observed to decrease faster for I-sections with higher section factors. This work also shows that the self-radiating mechanism of I-sections is important in the optically thin region, and existing methodologies neglecting these physics could significantly underpredict steel temperatures. The next focus of this work is to develop a thermal analysis framework dedicated to structures-in-fire modelling in the OpenSees (Open System for Earthquake Engineering Simulation) platform which has been developed towards a highly robust, extensible and flexible numerical analysis framework for the structural fire engineering community. The thermal analysis framework, which is developed with object-oriented programming paradigm, consists of a fire module which has incorporated a range of conventional empirical models as well as the travelling fire model recently developed elsewhere to quantify the fire imposed boundary conditions, and a heat transfer module which addresses non-linear heat conduction in structural members with the finite element method. The developed work has demonstrated good performance from benchmark problems where analytical solutions are available and from full scale tests with measured data. With the thermal analysis capability developed in this work together with the work by other colleagues to quantify the mechanical response at elevated temperatures, the extended OpenSees framework can be used to predict structural performances subjected to a wide range of re scenarios. This work uses OpenSees for a case study of a generic composite structure subjected to travelling fires. The latest work on travelling fire methodology for structural fire design has been implemented in the OpenSees framework. The work presented in this thesis is the first effort to examine both the thermal and structural responses of a composite tall building in travelling fires using OpenSees. Results from the thermal analysis show that travelling fires of larger sizes (e.g. burning area equal to 50% of the floor area) are more detrimental to steel beams in terms of more rapid heating rate, while those of smaller sizes (e.g. burning area equal to 4% of the floor area) burn for longer duration and thus are more detrimental to concrete slabs in light of higher peak temperatures. The results also show that fires of large sizes tends to produce higher through-depth thermal gradients in the steel beam sections particularly in neighbouring regions with the concrete slab. Due to less rapid heating rates but prolonged burning durations, smaller fires produce lower thermal gradients but with higher temperatures in the concrete slab particularly at locations far from the fire origin. The subsequent structural analysis suggests that travelling fires produce higher deflections and higher plastic deformations in comparison with the uniform parametric fires, particularly with smaller fire sizes producing more onerous results. The results seem to be more physically convincing and they challenge the conventional assumption that the post-flashover fires are always more conservative for structural performance.
3

Development of an integrated computational tool for modelling structural frames in fire considering local effects

Jiang, Liming January 2016 (has links)
In terms of developing knowledge to enable more effective use of performance based engineering (PBE), one of the key limitations is the lack of an easy to use integrated computational tool that is also robust and comprehensive enough to enable automated modelling of more realistic fire scenarios, i.e., the structural response to localised or travelling fires. The main objective of this thesis is to establish such an integrated computational tool, which shall be based on the OpenSees software framework and facilitated by specially developed approaches to achieve higher efficiency of the integrated analysis. This includes the analysis of heat transfer from the fire to structural members, as well as the analysis of structural response to elevated temperatures during the fire. In this thesis, the research begins with the investigation of the feasibility of dimensional reduction for heat transfer analyses of structural members subjected to localised fire action (SFPE and Eurocode 1 fire models), which can be numerically represented by a linear or exponential correlation between incident heat flux and radial distance. Accurate estimates of the error induced by dimensional reduction are presented under strongly varying localised heat fluxes that represent the most non-uniform fire conditions in a building compartment. It is shown that beams and slabs can be adequately modelled with a lower dimensional heat transfer analysis for ordinary building fires. Using this approach, the complexity of heat transfer modelling and the required computing resource and user effort can both be significantly reduced, especially in cases where structural members are subjected to localised fire action. Thermo-mechanical simulations are presented to address the behaviour of structural members subjected to localised fire action, for which a ThermalAction- Wrapper is developed to approximate the temperature distribution from a mixed-order interpolation between sections (beam) or locations (slab). For concrete slabs subjected to localised fire, MITC4 based shell elements are used to account for material and geometric nonlinearities. An integrated simulation environment is developed, which is designed to be a computational tool that requires limited input but provides a comprehensive solution to the problem of simulating large structural frame and sub-frame response under realistic fire scenarios. A considerable amount of code has been written to create and operate the building model, and to process the heat fluxes from the design fires to the structure and the consequential structural response to the evolution of temperatures within it. Parametric studies have been performed to investigate the computational performance of the newly developed elements in modelling beams and slabs subjected to different cases of localised fire action. The results suggest that 3 to 6 force-based beam elements can adequately describe the localised response however more elements are required for quadratic distribution of incident heat flux and higher temperatures, which is due to the degradation of material strength that governs the accuracy especially when the members are heavily loaded. For slabs exposed to localised fires, centre fires are found to produce greater deflections than corner fires, while lateral restraints applied to the slabs may also lead to higher deflections. A small-scale three dimensional structural frame is modelled as a demonstration of the tool, tested against a number of localised fire scenarios. The global behaviour of the structure with the local effects induced by the fire action and partially damaged fire protection are investigated. Severe damage can be found in the members exposed to a single whole compartment fire, in contrast with the relatively small deflections that are observed when a fully protected column is engulfed by a localised fire. However if the passive fire protection is partially damaged, collapse may occur in the column as a result of load magnification because of the redistribution. To the author's knowledge this is the first piece of research that has been able to develop a practically feasible approach to enable efficient coupled computation of the response of structural frames to realistic fire scenarios on a freely available open source software platform. Currently this kind of analysis can only be carried out by just two or three large consulting firms because of the prohibitive commitment of analyst time and effort and to a lesser extent the need for significant computing resources. The work of this thesis will contribute enormously towards making high-end performance based engineering of structural fire resistance a much more practical proposition for small and medium size structural consultancies. Furthermore, the choice of OpenSees, which is a very well respected software framework for simulating structural response to earthquakes naturally enables this work to be extended to the simulating the multi-hazard structural resistance, such as in the event of a fire following an earthquake which may have locally damaged passive fire protection.
4

Extended travelling fire method framework with an OpenSees-based integrated tool SIFBuilder

Dai, Xu January 2018 (has links)
Many studies of the fire induced thermal and structural behaviour in large compartments, carried out over the past two decades, show a great deal of non-uniformity, unlike the homogeneous compartment temperature assumption in the current fire safety engineering practice. Furthermore, some large compartment fires may burn locally and they tend to move across entire floor plates over a period of time as the fuel is consumed. This kind of fire scenario is beginning to be idealized as 'travelling fires' in the context of performance‐based structural and fire safety engineering. However, the previous research of travelling fires still relies on highly simplified travelling fire models (i.e. Clifton's model and Rein's model); and no equivalent numerical tools can perform such simulations, which involves analysis of realistic fire, heat transfer and thermo-mechanical response in one single software package with an automatic coupled manner. Both of these hinder the advance of the research on performance‐based structural fire engineering. The author develops an extended travelling fire method (ETFM) framework and an integrated comprehensive tool with high computational expediency in this research, to address the above‐mentioned issues. The experiments conducted for characterizing travelling fires over the past two decades are reviewed, in conjunction with the current available travelling fire models. It is found that no performed travelling fire experiment records both the structural response and the mass loss rate of the fuel (to estimate the fire heat release rate) in a single test, which further implies closer collaboration between the structural and the fire engineers' teams are needed, especially for the travelling fire research topic. In addition, an overview of the development of OpenSees software framework for modelling structures in fire is presented, addressing its theoretical background, fundamental assumptions, and inherent limitations. After a decade of development, OpenSees has modules including fire, heat transfer, and thermo‐mechanical analysis. Meanwhile, it is one of the few structural fire modelling software which is open source and free to the entire community, allowing interested researchers to use and contribute with no expense. An OpenSees‐based integrated tool called SIFBuilder is developed by the author and co‐workers, which can perform fire modelling, heat transfer analysis, and thermo-mechanical analysis in one single software with an automatic coupled manner. This manner would facilitate structural engineers to apply fire loading on their design structures like other mechanical loading types (e.g. seismic loading, gravity loading, etc.), without transferring the fire and heat transfer modelling results to each structural element manually and further assemble them to the entire structure. This feature would largely free the structural engineers' efforts to focus on the structural response for performance-based design under different fire scenarios, without investigating the modelling details of fire and heat transfer analysis. Moreover, the efficiency due to this automatic coupled manner would become more superior, for modelling larger structures under more realistic fire scenarios (e.g. travelling fires). This advantage has been confirmed by the studies carried out in this research, including 29 travelling fire scenarios containing total number of 696 heat transfer analysis for the structural members, which were undertaken at very modest computational costs. In addition, a set of benchmark problems for verification and validation of OpenSees/SIFBuilder are investigated, which demonstrates good agreement against analytical solutions, ABAQUS, SAFIR, and the experimental data. These benchmark problems can also be used for interested researchers to verify their own numerical or analytical models for other purposes, and can be also used as an induction guide of OpenSees/SIFBuilder. Significantly, an extended travelling fire method (ETFM) framework is put forward in this research, which can predict the fire severity considering a travelling fire concept with an upper bound. This framework considers the energy and mass conservation, rather than simply forcing other independent models to 'travel' in the compartment (i.e. modified parametric fire curves in Clifton's model, 800°C‐1200°C temperature block and the Alpert's ceiling jet in Rein's model). It is developed based on combining Hasemi's localized fire model for the fire plume, and a simple smoke layer calculation by utilising the FIRM zone model for the areas of the compartment away from the fire. Different from mainly investigating the thermal impact due to various ratios of the fire size to the compartment size (e.g. 5%, 10%, 25%, 75%, etc.), as in Rein's model, this research investigates the travelling fire thermal impact through explicit representation of the various fire spread rates and fuel load densities, which are the key input parameters in the ETFM framework. To represent the far field thermal exposures, two zone models (i.e. ASET zone model & FIRM zone model) and the ETFM framework are implemented in SIFBuilder, in order to provide the community a 'vehicle' to try, test, and further improve this ETFM framework, and also the SIFBuilder itself. It is found that for 'slow' travelling fires (i.e. low fire spread rates), the near‐field fire plume brings more dominant thermal impact compared with the impact from far‐field smoke. In contrast, for 'fast' travelling fires (i.e. high fire spread rates), the far‐field smoke brings more dominant thermal impact. Furthermore, the through depth thermal gradients due to different travelling fire scenarios were explored, especially with regards to the 'thermal gradient reversal' due to the near‐field fire plume approaching and leaving the design structural member. This 'thermal gradient reversal' would fundamentally reverse the thermally‐induced bending moment from hogging to sagging. The modelling results suggest that the peak thermal gradient due to near‐field approaching is more sensitive to the fuel load density than fire spread rate, where larger peak values are captured with lower fuel load densities. Moreover, the reverse peak thermal gradient due to near‐field leaving is also sensitive to the fuel load density rather than the fire spread rate, but this reverse peak value is inversely proportional to the fuel load densities. Finally, the key assumptions of the ETFM framework are rationalised and its limitations are emphasized. Design instructions with relevant information which can be readily used by the structural fire engineers for the ETFM framework are also included. Hence more optimised and robust structural design under such fire threat can be generated and guaranteed, where we believe these efforts will advance the performance‐based structural and fire safety engineering.
5

The performance of lateral spread sites treated with prefabricated vertical drains : physical and numerical models

Howell, Rachelle Lee 25 October 2013 (has links)
Drainage methods for liquefaction remediation have been in use since the 1970's and have traditionally included stone columns, gravel drains, and more recently prefabricated vertical drains. The traditional drainage techniques such as stone columns and gravel drains rely upon a combination of drainage and densification to mitigate liquefaction and thus, the improvement observed as a result of these techniques cannot be ascribed solely to drainage. Therefore, uncertainty exists as to the effectiveness of pure drainage, and there is some hesitancy among engineers to use newer drainage methods such as prefabricated vertical drains, which rely primarily on drainage rather than the combination of drainage and densification. Additionally, the design methods for prefabricated vertical drains are based on the design methods developed for stone columns and gravel drains even though the primary mechanisms for remediation are not the same. The objectives of this research are to use physical and numerical models to assess the effectiveness of drainage as a liquefaction remediation technique and to identify the controlling behavioral mechanisms that most influence the performance of sites treated with prefabricated vertical drains. In the first part of this research, a suite of three large-scale dynamic centrifuge tests of untreated and drain-treated sloping soil profiles was performed. Acceleration, pore pressure, and deformation data was used to evaluate the effectiveness of drainage in reducing liquefaction-induced lateral deformations. The results showed that the drains reduced the generated peak excess pore pressures and expedited the dissipated of pore water pressures both during and after shaking. The influence of the drains on the excess pore pressure response was found to be sensitive to the characteristics of the input motion. The drainage resulted in a 30 to 60% reduction in the horizontal deformations and a 20 to 60% reduction in the vertical settlements. In the second part of this research, the data and insights gained from the centrifuge tests was used to develop numerical models that can be used to investigate the factors that most influence the performance of untreated and drain-treated lateral spread sites. Finite element modeling was performed using the OpenSees platform. Three types of numerical models were developed - 2D infinite slope unit cell models of the area of influence around a single drain, 3D infinite slope unit cell models of the area of influence around a single drain, and a full 2D plane strain model of the centrifuge tests that included both the untreated and drain-treated slopes as well as the centrifuge container. There was a fairly good match between the experimental and simulated excess pore pressures. The unit cell models predicted larger horizontal deformations than were observed in the centrifuge tests because of the infinite slope geometry. Issues were identified with the constitutive model used to represent the liquefiable sand. These issues included a coefficient of volumetric compressibility that was too low and a sensitivity to low level accelerations when the stress path is near the failure surface. In the final part of this research, the simulated and experimental data was used to examine the relationship between the generated excess pore water pressures and the resulting horizontal deformations. It was found that the deformations are directly influenced by both the excess pore pressures and the intensity of shaking. There is an excess pore pressure threshold above which deformations begin to become significant. The horizontal deformations correlate well to the integral of the average excess pore pressure ratio-time history above this threshold. They also correlate well to the Arias intensity and cumulative absolute velocity intensity measures. / text
6

Quantifying Ultra-high Performance Concrete Flexural System Mechanical Response

Xiao, Yulin 01 January 2014 (has links)
The research and application of Ultra-high Performance Concrete (UHPC) has been developed significantly within the last 1-2 decades. Due to the specific property of high strength capacity, it is potential to be used in bridge deck system without shear reinforcement so that it provides even lighter self-weight of the deck. However, one of the shear component, dowel action, has not been adequately investigated in the past. In this dissertation, a particular test was designed and carried out to fully investigate the dowel action response, especially its contribution to shear resistance. In addition, research on serviceability and fatigue behaviors were expanded as well to delete the concern on other factors that may influence the application to the deck system. Both experimental and analytical methods including finite element modeling, OpenSees modeling and other extension studies were presented throughout the entire dissertation where required.
7

Blast Performance Quantification Strategies For Reinforced Masonry Shear Walls With Boundary Elements

El-Hashimy, Tarek January 2019 (has links)
Structural systems have been evolving in terms of material properties and construction techniques, and their levels of protection against hazardous events have been the focus of different studies. For instance, the performance of the lateral force resisting systems has been investigated extensively to ensure that such systems would provide an adequate level of strength ductility capacity when subjected to seismic loading. However, with the increased occurrence of accidental and deliberate explosion incidents globally by more than three fold from 2004 to 2012, more studies have been focusing on the performance of such systems to blast loads and the different methods to quantify the inflicted damage. Although both blast and seismic design requires structures to sustain a level of ductility to withstand the displacement demands, the distributions of such demands from seismic ground excitation and blast loading throughout the structural system are completely different. Therefore, a ductile seismic force resisting system may not necessarily be sufficient to resist a blast wave. To address this concern, North American standards ASCE 59-11, CSA S850-12 provide response limits that define the different damage states that components may exhibit prior to collapse. Over the past ten years, a new configuration of reinforced masonry (RM) shear walls utilizing boundary elements (BEs) at the vertical edges of the wall has been investigated as an innovative configuration that enhances the wall’s in-plane performance. As such, they are included in the North American Masonry design standards, CSA S304-14 and TMS 402-16 as an alternative means to enhance the ductility of seismic force resisting systems. However, investigations regarding the out-of-plane performance of such walls are generally scarce in literature which hindered the blast design standards from providing unique response limits that can quantify the different damage states for RM walls with BEs. This dissertation has highlighted that some relevant knowledge gaps may lead to unconservative designs. Such gaps include (a) the RM wall with BEs out-of-plane behavior and damage sequence; and more specifically, (b) the BEs influence on the wall load-displacement response; as well as, (c) the applicability of using of the current response limits originally assigned for conventional RM walls to assess RM walls with BEs. Addressing these knowledge gaps is the main motivation behind this dissertation. In this respect, this dissertation reports an experimental program, that focuses on bridging the knowledge gap pertaining to the out-of-plane performance of seismically-detailed RM shear walls with BEs, which were not designed to withstand blast loads. Meanwhile, from the analytical perspective, plastic analyses were carried out taking into account the different mechanisms that the wall may undergo until peak resistance is achieved. This approach was adopted in order to quantify the resistance function of such walls and determine the contribution of the BEs and web to the overall wall resistance. In addition, the experimental results of the tested walls were used to validate a numerical finite element model developed to compare the resistance function of RM walls with and without BEs. Afterwards, the model was further refined to capture the walls’ performance under blast loads. The pressure impulse diagrams were generated to assess the capability of the current response limits in quantifying the different damage states for walls with different design parameters. Furthermore, new response limits were proposed to account for the out-of-plane ductility capacities of different wall components. Finally, a comparison between conventional rectangular walls and their counterparts with BEs using the proposed limits was conducted in the form of pressure-impulse diagram to highlight the major differences between both wall configurations. / Thesis / Doctor of Philosophy (PhD)
8

Seismic Response Analysis of a Full-Scale Base-Isolated Structure via Measurements and Modeling

YIN, BOYA January 2016 (has links)
<p>The full-scale base-isolated structure studied in this dissertation is the only base-isolated building in South Island of New Zealand. It sustained hundreds of earthquake ground motions from September 2010 and well into 2012. Several large earthquake responses were recorded in December 2011 by NEES@UCLA and by GeoNet recording station nearby Christchurch Women's Hospital. The primary focus of this dissertation is to advance the state-of-the art of the methods to evaluate performance of seismic-isolated structures and the effects of soil-structure interaction by developing new data processing methodologies to overcome current limitations and by implementing advanced numerical modeling in OpenSees for direct analysis of soil-structure interaction.</p><p>This dissertation presents a novel method for recovering force-displacement relations within the isolators of building structures with unknown nonlinearities from sparse seismic-response measurements of floor accelerations. The method requires only direct matrix calculations (factorizations and multiplications); no iterative trial-and-error methods are required. The method requires a mass matrix, or at least an estimate of the floor masses. A stiffness matrix may be used, but is not necessary. Essentially, the method operates on a matrix of incomplete measurements of floor accelerations. In the special case of complete floor measurements of systems with linear dynamics, real modes, and equal floor masses, the principal components of this matrix are the modal responses. In the more general case of partial measurements and nonlinear dynamics, the method extracts a number of linearly-dependent components from Hankel matrices of measured horizontal response accelerations, assembles these components row-wise and extracts principal components from the singular value decomposition of this large matrix of linearly-dependent components. These principal components are then interpolated between floors in a way that minimizes the curvature energy of the interpolation. This interpolation step can make use of a reduced-order stiffness matrix, a backward difference matrix or a central difference matrix. The measured and interpolated floor acceleration components at all floors are then assembled and multiplied by a mass matrix. The recovered in-service force-displacement relations are then incorporated into the OpenSees soil structure interaction model.</p><p>Numerical simulations of soil-structure interaction involving non-uniform soil behavior are conducted following the development of the complete soil-structure interaction model of Christchurch Women's Hospital in OpenSees. In these 2D OpenSees models, the superstructure is modeled as two-dimensional frames in short span and long span respectively. The lead rubber bearings are modeled as elastomeric bearing (Bouc Wen) elements. The soil underlying the concrete raft foundation is modeled with linear elastic plane strain quadrilateral element. The non-uniformity of the soil profile is incorporated by extraction and interpolation of shear wave velocity profile from the Canterbury Geotechnical Database. The validity of the complete two-dimensional soil-structure interaction OpenSees model for the hospital is checked by comparing the results of peak floor responses and force-displacement relations within the isolation system achieved from OpenSees simulations to the recorded measurements. General explanations and implications, supported by displacement drifts, floor acceleration and displacement responses, force-displacement relations are described to address the effects of soil-structure interaction.</p> / Dissertation
9

Development of Computational Models for Cyclic Response of Reinforced Concrete Columns

Bicici, Erkan January 2018 (has links)
No description available.
10

Optimized Distribution of Strength in Buckling-Restrained Brace Frames in Tall Buildings

Oxborrow, Graham Thomas 02 July 2009 (has links) (PDF)
Nonlinear time history analysis is increasingly being used in the design of tall steel structures, but member sizes still must be determined by a designer before an analysis can be performed. Often the distribution of story strength is still based on an assumed first mode response as determined from the Equivalent Lateral Force (ELF) procedure. For tall buckling restrained braced frames (BRBFs), two questions remain unanswered: what brace distribution will minimize total brace area, while satisfying story drift and ductility limits, and is the ELF procedure an effective approximation of that distribution? In order to investigate these issues, an optimization algorithm was incorporated into the OpenSees dynamic analysis platform. The resulting program uses a genetic algorithm to determine optimum designs that satisfy prescribed drift/ductility limits during nonlinear time history analyses. The computer program was used to investigate the optimized distribution of brace strength in BRBFs with different heights. The results of the study provide insight into efficient design of tall buildings in high seismic areas and evaluate the effectiveness of the ELF procedure.

Page generated in 0.0281 seconds