Gravitational perturbations can be in the form of scalars, vectors or tensors. This thesis focuses on the evolution of scalar perturbations in cosmology, and interactions between tensor perturbations, in the form of gravitational waves, and plasma waves. The gravitational waves studied in this thesis are assumed to have small amplitudes and wavelengths much shorter than the background length scale, allowing for the assumption of a flat background metric. Interactions between gravitational waves and plasmas are described by the Einstein-Maxwell-Vlasov, or the Einstein-Maxwell-fluid equations, depending on the level of detail required. Using such models, linear wave excitation of various waves by gravitational waves in astrophysical plasmas are studied, with a focus on resonance effects. Furthermore, the influence of strong magnetic field quantum electrodynamics, leading to detuning of the gravitational wave-electromagnetic wave resonances, is considered. Various nonlinear phenomena, including parametric excitation and wave steepening are also studied in different astrophysical settings. In cosmology the evolution of gravitational perturbations are of interest in processes such as structure formation and generation of large scale magnetic fields. Here, the growth of density perturbations in Kantowski-Sachs cosmologies with positive cosmological constant is studied.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:umu-38387 |
Date | January 2010 |
Creators | Forsberg, Mats |
Publisher | Umeå universitet, Institutionen för fysik, Umeå : Institutionen för Fysik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0026 seconds