Return to search

Controlling guided elastic waves using adaptive gradient-index structures

Les matériaux à gradient d'indice de réfraction (GRIN) présentent des propriétés mécaniques variant en temps ou/et en espace. Ils ont été testés pour des applications prometteuses dans de nombreuses applications d'ingénierie, comme pour le contrôle santé structurale ou la surveillance de structure (SHM), le contrôle des vibrations et bruit, la récupération d'énergie, etc. D'un autre côté, les matériaux piézoélectriques offrent la possibilité de réaliser des cellules composites dont les propriétés mécaniques peuvent être contrôlées en ligne. Motivé par ces deux approches, cette thèse étudie la mise en œuvre de structures GRIN adaptatifs pour le contrôle des ondes élastiques. Deux types de structures GRIN adaptatifs sont étudiés dans ce travail. Le premier exemple concerne la mise en œuvre d'une lentille piézoélectrique dans une plaque. Il est composé de patchs piézoélectriques shuntés, collés périodiquement en surface du guide d'ondes. Les circuits de shunt utilisés permettent d'émuler une capacité négative (NC). En accordant les valeurs de NC on peut ajuster l'indices de réfraction du milieu à l'intérieur de la lentille piézoélectrique et pour satisfaire une fonction sécante hyperbolique. Les résultats numériques montrent que les lentilles piézoélectriques peuvent alors focaliser les ondes de flexion de la plaque sur les points focaux. La lentille piézoélectrique est efficace dans une grande bande de fréquences et efficace dans une grande plage de fonctionnement. Ainsi elle peut focaliser des ondes sur différent points par simple ajustement des valeurs de NC réalisés par le circuit. Cette focalisation adaptative la rend très intéressante pour de nombreuses applications comme la récupération d'énergie ou le SHM. La mise en œuvre de ces techniques pour la récupération d'énergie est discutée dans cette thèse. Le second exemple concerne l'étude d'une structure dont les propriétés mécaniques sont contrôlées en temps et en espace. En particulier, une modulation périodique permet de créer une onde artificielle se propageant dans la structure. L'interaction avec des ondes mécaniques entraîne une rupture de réciprocité visible dans un diagramme de bande non symétrique. De nombreux phénomènes inhabituels sont observés dans ce type de structures variables : fractionnement des fréquences, conversion d'ondes et transmission unidirectionnelles. Deux types de conversion fréquentielle sont démontrés et expliqués. Le premier est induit par la transmission d'énergie entre les différents modes Bloch et le second type est dû à la diffusion de Bragg dans les structures modulées. La transmission unidirectionnelle des ondes pourrait être exploitée pour réaliser des diodes dans des systèmes infinis ou semi-infinis. Cependant, la transmission unidirectionnelle n'existe pas dans les systèmes finis en raison des phénomènes de conversion de fréquence. / GRadient INdex (GRIN) media are those whose properties smoothly vary in space or/and time. They have shown promising effects in many engineering applications, such as Structural Health Monitoring (SHM), vibration and noise control, energy harvesting, etc. On the other hand, piezoelectric materials provide the possibility to build unit cells, whose mechanical properties can be controlled on-line. Motivated by these two facts, adaptive GRIN structures, which can be realized using shunted piezoelectric materials, are explored in this dissertation to control guided elastic waves. Two types of adaptive GRIN structures are studied in this work. The first type is a piezo-lens. It is composed of shunted piezoelectric patches bonded on the surfaces of plates. To control the mechanical properties of the piezoelectric composite, the piezoelectric patches are shunted with Negative Capacitance (NC). By tuning the shunting NC values, refractive indexes inside the piezo-lens are designed to satisfy a hyperbolic secant function in space. Numerical results show that the piezo-lens can focus waves by smoothly bending them toward the designated focal point. The piezo-lens is effective in a large frequency band and is efficient in many different working conditions. Also the same piezo-lens can focus waves at different locations by tuning the shunting NC values. The focusing effect and tunable feature of piezo-lens make it useful in many applications like energy harvesting and SHM. The former application is fully discussed in this thesis. The focusing effect at the focal point results in a known point with high energy density, therefore harvesting at the focal point can yield more energy. Besides, the tunable ability makes the harvesting system adaptive to environment changes. The second type is the time-space modulated structure. Its properties are modulated periodically both in time and space. Particularly, the modulation works like a traveling wave in the structure. Due to the time-varying feature, time-space modulated structures break the reciprocity theorem, i.e., the wave propagation in them is nonreciprocal. Many unusual phenomena are observed during the interaction between waves and time-space modulated structures: frequency splitting, frequency conversion and one-way wave transmission. Two types of frequency conversion are demonstrated and explained. The first type is caused by energy transmission between different orders Bloch modes. The second type is due to the Bragg scattering effect inside the modulated structures. The one-way wave transmission could be exploited to realize one-way energy insulation in equivalent infinite or semi-inffnite systems. However, the one-way energy insulation fails in finite systems due to the frequency conversion phenomenon.

Identiferoai:union.ndltd.org:theses.fr/2017LYSEC044
Date14 November 2017
CreatorsYi, Kaijun
ContributorsLyon, Collet, Manuel
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0024 seconds