Return to search

Inégalités fonctionnelles pour des noyaux de la chaleur sous-elliptiques

Dans cette thèse, j'ai étudié le noyau et le semi-groupe de la chaleur ainsi que les inégalités fonctionnelles associées sur trois espaces modèles de la géométrie sous-elliptique. Cette étude a en fait pour principal objectif de développer et tester de nouvelles techniques et méthodes que l'on espère ensuite pouvoir étendre en géométrie sous-elliptique. Le but avoué est de comprendre en géométrie sous-elliptique une notion de courbure de Ricci minorée par une constante. Ici, les trois espaces modèles sont des groupes de Lie de dimension 3: le groupe de Heisenberg, le groupe SU(2) et le groupe SL(2,R), que l'on munit d'un sous-laplacien: un opérateur différentiel du second ordre invariant à gauche essentiellement auto-adjoint pour la mesure de Haar du groupe qui n'est pas elliptique mais hypoelliptique d'après des résultats de Hörmander. Mes résultats portent tout d'abord sur l'obtention de formules explicites pour les noyaux de la chaleur associés. J'ai ensuite introduit un critère de courbure-dimension de Bakry-Emery généralisé qui, sous certaines conditions d'antisymétrie vérifiées sur nos espaces modèles, permet l'obtention d'estimées du type de Li-Yau. Je me suis enfin intéressé à l'établissement et l'étude d'inégalités de sous-commutation entre le gradient et le semi-groupe de la chaleur. J'ai notamment donné deux nouvelles démonstrations de l'inégalité de H.Q.Li sur le groupe de Heisenberg.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00460624
Date27 November 2009
CreatorsBonnefont, Michel
PublisherUniversité Paul Sabatier - Toulouse III
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0022 seconds