Return to search

Nuclear magnetic resonance and specific heat studies of half-metallic ferromagnetic Heusler compounds

Half-metallic ferromagnets (HMFs), with fully spin-polarized conduction electrons, are prime candidates for optimizing spintronic devices. Many Heusler compounds (a class of ternary and quaternary intermetallics) are predicted to be HMFs, in particular Co$_{2}YZ$ (where $Y$ is usually another transition metal, and $Z$ is an s-p element). Crystal structure is controlled by thermodynamics to a large extent. Ideally, one should be able to control and optimize properties which are of interest by appropriately "tuning" the structure (e.g. annealing), but first one must understand the structure and its relation to observed physical properties. A local structural probe technique such as nuclear magnetic resonance (NMR) is an essential tool for identifying and quantifying the various atomic-scale orderings. Different Heusler structure types and antisite disorders affect the material's physical properties.

In this thesis, order-disorder phenomena in both bulk and thin film samples of Co$_2$Mn$_{1-x}$Si$_x$ and Co$_2$Mn$_{1-x}$Fe$_x$Si have been systematically studied using NMR. Though it is the films which are directly implemented in actual devices, studying bulk samples as model systems provides invaluable information regarding the material properties.

The evolution of local atomic structure in numerous thin films has been shown to depend greatly on preparation parameters, including post-deposition annealing temperature, and specific stoichiometry. For Co$_2$MnSi films, the ideal post-annealing temperature for promoting the $L2_1$ atomic structure was found; the threshold temperature above which structure continues to become higher-ordered in the bulk, but where too much interdiffusion at the buffer interface occurs, degrading the smooth interfaces necessary for high magnetoresistance ratios. NMR also adds evidence that Co$_2$Mn$_x$Si$_{0.88}$ ($x>$1) electrodes in magnetic tunnel junctions have highest tunneling magneto-resistance because the excess Mn suppresses the formation of detrimental Co$_{Mn}$ antisites.

A systematic investigation of several thermal and magnetic properties, including Sommerfeld coefficients, Debye temperatures, saturation magnetic moments, spin-wave stiffness, and magnon specific heat coefficient, were measured for selected Co$_2$-based ternary and quaternary Heusler compounds. Obtained values were compared with theoretical ones calculated using electronic band structure methods. It has been systematically shown that adding a magnon term to the specific heat has a negligible effect on the electronic contribution in all cases.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:29265
Date26 January 2016
CreatorsRodan, Steven
ContributorsBüchner, Bernd, Kohlhepp, Jürgen, Technische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0017 seconds