Return to search

Anomaly Detection in Categorical Data with Interpretable Machine Learning : A random forest approach to classify imbalanced data

Metadata refers to "data about data", which contains information needed to understand theprocess of data collection. In this thesis, we investigate if metadata features can be usedto detect broken data and how a tree-based interpretable machine learning algorithm canbe used for an effective classification. The goal of this thesis is two-fold. Firstly, we applya classification schema using metadata features for detecting broken data. Secondly, wegenerate the feature importance rate to understand the model’s logic and reveal the keyfactors that lead to broken data. The given task from the Swedish automotive company Veoneer is a typical problem oflearning from extremely imbalanced data set, with 97 percent of data belongs healthy dataand only 3 percent of data belongs to broken data. Furthermore, the whole data set containsonly categorical variables in nominal scales, which brings challenges to the learningalgorithm. The notion of handling imbalanced problem for continuous data is relativelywell-studied, but for categorical data, the solution is not straightforward. In this thesis, we propose a combination of tree-based supervised learning and hyperparametertuning to identify the broken data from a large data set. Our methods arecomposed of three phases: data cleaning, which is eliminating ambiguous and redundantinstances, followed by the supervised learning algorithm with random forest, lastly, weapplied a random search for hyper-parameter optimization on random forest model. Our results show empirically that tree-based ensemble method together with a randomsearch for hyper-parameter optimization have made improvement to random forest performancein terms of the area under the ROC. The model outperformed an acceptableclassification result and showed that metadata features are capable of detecting brokendata and providing an interpretable result by identifying the key features for classificationmodel.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-158185
Date January 2019
CreatorsYan, Ping
PublisherLinköpings universitet, Statistik och maskininlärning
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0027 seconds