Return to search

Cokulturtestsystem für die Untersuchung des Einflusses physikochemischer Eigenschaften von Copolymeren auf das Verhalten von Keratinozyten und Fibroblasten / Coculture test system for the investigation of the influence of physicochemical properties of copolymers on the behaviour of keratinocytes and fibroblasts

Chemische und physikalische Eigenschaften von Polymeren können verschiedene Zelltypen unterschiedlich, z. B. hinsichtlich Adhärenz oder Funktionalität, beeinflussen.
Die Elastizität eines Polymers beeinflusst vor allem, welche Zugkräfte eine Zelle gegenüber ihrem Substrat entwickeln kann. Das Zellverhalten wird dann über intrazelluläre Rückkopplungsmechanismen reguliert. Die Oberflächenladung und/oder Hydrophilie eines Polymers beeinflusst zunächst die Adsorption von Ionen, Proteinen und anderen Molekülen. Vor allem über die Zusammensetzung, Dichte und Konformation der adsorbierten Komponenten werden anschließend die Wechselwirkungen mit den Zellen vermittelt. Des Weiteren können verschiedene Zelltypen unterschiedliche membranassoziierte Proteine, Zucker und Lipide aufweisen, so dass Polymereigenschaften zellspezifische Effekte bewirken können.
Für biotechnologische Anwendungen und für den Einsatz in der regenerativen Medizin gewinnen Polymere, die spezifische Zellreaktionen regulieren können, immer weiter an Bedeutung. Die Isolierung und Kultur von primären Keratinozyten ist noch immer anspruchsvoll und die adäquate Heilung von Hautwunden stellt eine fortwährende medizinische Herausforderung dar. Ein Polymer, das eine bevorzugte Adhärenz von Keratinozyten bei gleichzeitig verminderter Anheftung dermaler Fibroblasten ermöglicht, würde erhebliche Vorteile für den Einsatz in der Keratinozyten-Zellkultur und als Wundauflage bieten.
Um den potentiell spezifischen Einfluss bestimmter Polymereigenschaften auf primäre humane Keratinozyten und dermale Fibroblasten zu untersuchen, wurde in der vorliegenden Arbeit ein Zellkultursystem für die Mono- und Cokultur beider Zelltypen entwickelt. Das Testsystem wurde als Screening konzipiert, um den Einfluss unterschiedlicher Polymereigenschaften in mehreren Abstufungen auf die Zellen zu untersuchen. Folgende Parameter wurden untersucht: 1. Vitalität und Dichte adhärenter und nicht-adhärierter Zellen, 2. Schädigung der Zellmembran, 3. selektive Adhärenz von Keratinozyten in Cokultur durch die spezifische immunzytochemische Färbung von Keratin14 und Vimentin. Für die Polymere mit variabler Elastizität wurden zusätzlich die Ablagerung extrazellulärer Matrixkomponenten und die Sekretion löslicher Faktoren durch die Zellen untersucht.
Als Modellpolymere für die Variation der Elastizität wurden vernetzte Poly(n-butylacrylate) (cPnBA) verwendet, da deren Elastizität durch den Anteil des Vernetzers eingestellt werden kann. Auf dem weniger elastischen cPnBA zeigte sich in der Cokultur ein doppelt so hohes Verhältnis von Keratinozyten zu Fibroblasten wie auf dem elastischeren cPnBA, so dass ein leichter zellselektiver Effekt angenommen werden kann. Acrylnitril-basierte Copolymere wurden als Modellpolymere für die Variation der Oberflächenladung und Hydrophilie verwendet, da die Eigenschaften durch Art und molaren Anteil des Comonomers eingestellt werden können. Durch Variation des molaren Anteils der Comonomere mit positiver bzw. negativer Ladung, Methacrylsäure-2-aminoethylester-hydrochhlorid (AEMA) und N-3-Aminopropyl-methacrylamid-hydro-chlorid (APMA) bzw. Natriumsalz der 2-Methyl-2-propen-1-sulfonsäure (NaMAS), wurde der Anteil der positiven bzw. negativen Ladung im Copolymer variiert. Durch die Erhöhung des molaren Anteils des hydrophilen Comonomers N-Vinylpyrrolidon (NVP) wurde die Hydrophilie des Copolymers gesteigert. Die Erhöhung des molaren Anteils an positiv geladenem Comonomer AEMA im Copolymer führte tendenziell zu einer höheren Keratinozytendichte, wobei die Fibroblastendichte unverändert blieb. Durch die Erhöhung des molaren Anteils des positiv geladenen Comonomers APMA ergaben sich keine deutlichen Unterschiede in Dichte, Vitalität oder Selektivität der Zellen. Durch die stufenweise Erhöhung des molaren Anteils des negativ geladenen Comonomers NaMAS konnte, wie im Falle von AEMA, eine Tendenz zur verbesserten Keratinozytenadhärenz beobachtet werden. Die Steigerung der Hydrophilie der Copolymere führte sowohl für Keratinozyten als auch für Fibroblasten zu einer reduzierten Adhärenz und Vitalität.
In der vorliegenden Doktorarbeit wurde ein Testverfahren etabliert, das die Untersuchung von primären humanen Keratinozyten und primären humanen Fibroblasten in Monokultur und Cokultur auf verschiedenen Polymeren ermöglicht. Die bisherigen Ergebnisse zeigen, dass sich durch die gezielte Modifizierung verschiedener Polymereigenschaften die Adhärenz und Vitalität beider Zelltypen beeinflussen lässt. Die Reduktion der Elastizität sowie die Erhöhung des molaren Anteils geladener Comonomere führten zu einer Zunahme der Keratinozytenadhärenz. Da die Fibroblasten unbeeinflusst blieben, zeigte sich für einige der untersuchten Polymere eine leichte Zellselektivität. Diese könnte durch die weitere Erhöhung der Steifigkeit oder des Anteils geladener Comonomere möglicherweise weiter gesteigert werden. / Chemical and physical properties of polymers can influence various cell types, e.g. concerning adherence and functionality. For instance, the elasticity of a polymer can influence, which pulling force a cell can generate towards a substrate. According to the cell type, its behavior can be controlled by intracellular feedback mechanisms. The surface charge and/or hydrophilicity of a polymer initially influence the adsorption of ions, proteins and other molecules. In particular, the composition, density, and conformation of the adsorbed components mediate the cell-material interactions. Since different cell types present varying cell membrane associated proteins, sugars and lipids, it is assumed that polymer properties can induce cell specific effects.
Polymers, which can regulate specific cell reactions, become more and more important for biotechnological uses and applications in the regenerative medicine. The isolation and culture of primary keratinocytes is still challenging and an adequate wound healing remains a clinical task. A polymer, which enables a preferential adherence of keratinocytes and induces a reduced adherence of dermal fibroblasts, would provide enormous advantages for keratinocyte culture systems as well as for wound dressings.
To investigate the specific influence of certain polymer properties on primary human keratinocytes and fibroblasts, a cell culture system for mono- and coculture of both cell types was established. The test system was designed as a screening to investigate the influence of polymers with gradations of different properties on the cells. Thereby, the viability and density of adherent and not adhered cells, as well as the impairment of the cell membranes were analyzed in mono- and cocultures, and the selective adherence of keratinocytes in the coculture was evaluated using a specific immunocytochemical staining for keratin14 and vimentin. Furthermore, the deposition of extracellular matrix components and the secretion of soluble factors were analyzed for the elastic polymers.
Since the elasticity of crosslinked poly(n-butylacrylate) (cPnBA) networks can be adjusted by the amount of the crosslinker, they were used as model polymers to investigate the influence of varying elasticity to the cells. On the less elastic cPnBA, the ratio of keratinocytes to fibroblasts was increased compared to the more elastic one. From these results, a slight cell selective effect can be assumed. Acrylonitrile-based copolymers were used as model polymers for the variation of surface charge and hydrophilicity, since their properties can be modified by the type and molar ratio of comonomers. By the variation of the molar ratio of positively charged comonomers (Methacrylic acid-2-aminoethylester hydrochloride (AEMA) and N-3-aminopropyl methacrylamide hydrochloride (APMA)), or a negatively charged comonomer (2-methyl-2-propene-1-sulfonic acid sodium salt (NaMAS)), the amount of positive or negative charges was modified. The hydrophilicity was increased by the molar ratio of the hydrophilic comonomer N-vinylpyrrolidone (NVP).
With an increased molar ratio of the positively charged comonomer AEMA, a tendency towards a higher density of adherent keratinocytes could be shown, whereby, the density of adherent fibroblasts remained unaffected. With increasing molar ratios of the positively charged comonomer APMA, no differences between cell densities, viability or selectivity were detectable. Comparable to AEMA, a tendency towards improved keratinocyte adhesion could be shown with an increasing molar ratio of the negatively charged comonomer NaMAS. The increase of the hydrophilicity of the copolymers led to a reduced adherence and viability of the keratinocytes, as well as of the fibroblasts.
In conclusion, a test system was established, which enables the evaluation of primary human keratinocytes and fibroblasts in contact with different polymers in monoculture, as well as in coculture. Furthermore, the present thesis shows that directed modifications of polymer properties influenced the adherence and viability of both cell types. The decrease of elasticity and the increase of the molar ratio of charged comonomers led to an increased keratinocyte adherence. Since the fibroblasts remained unaffected, slight cell selectivity was shown. By further increasing the stiffness or the amount of charged comonomers, further enhancement of this effect might be possible.

Identiferoai:union.ndltd.org:Potsdam/oai:kobv.de-opus-ubp:6291
Date January 2012
CreatorsTrescher, Karoline
PublisherUniversität Potsdam, Mathematisch-Naturwissenschaftliche Fakultät. Institut für Biochemie und Biologie
Source SetsPotsdam University
LanguageGerman
Detected LanguageEnglish
TypeText.Thesis.Doctoral
Formatapplication/pdf
Rightshttp://opus.kobv.de/ubp/doku/urheberrecht.php

Page generated in 0.0063 seconds