Recent developments in the field of object detection have highlighted a significant variation in quality between visual datasets. As a result, there is a need for a standardized approach of validating visual dataset features and their performance contribution. With a focus on vehicle detection, this thesis aims to develop an evaluation method utilized for comparing visual datasets. This method was utilized to determine the dataset that contributed to the detection model with the greatest ability to detect vehicles. The visual datasets compared in this research were BDD100K, KITTI and Udacity, each one being trained on individual models. Applying the developed evaluation method, a strong indication of BDD100K's performance superiority was determined. Further analysis and feature extraction of dataset size, label distribution and average labels per image was conducted. In addition, real-world experimental conduction was performed in order to validate the developed evaluation method. It could be determined that all features and experimental results pointed to BDD100K's superiority over the other datasets, validating the developed evaluation method. Furthermore, the TensorFlow Object Detection API's ability to improve performance gain from a visual dataset was studied. Through the use of augmentations, it was concluded that the TensorFlow Object Detection API serves as a great tool to increase performance gain for visual datasets. / Inom fältet av objektdetektering har ny utveckling demonstrerat stor kvalitetsvariation mellan visuella dataset. Till följd av detta finns det ett behov av standardiserade valideringsmetoder för att jämföra visuella dataset och deras prestationsförmåga. Detta examensarbete har, med ett fokus på fordonsigenkänning, som syfte att utveckla en pålitlig valideringsmetod som kan användas för att jämföra visuella dataset. Denna valideringsmetod användes därefter för att fastställa det dataset som bidrog till systemet med bäst förmåga att detektera fordon. De dataset som användes i denna studien var BDD100K, KITTI och Udacity, som tränades på individuella igenkänningsmodeller. Genom att applicera denna valideringsmetod, fastställdes det att BDD100K var det dataset som bidrog till systemet med bäst presterande igenkänningsförmåga. En analys av dataset storlek, etikettdistribution och genomsnittliga antalet etiketter per bild var även genomförd. Tillsammans med ett experiment som genomfördes för att testa modellerna i verkliga sammanhang, kunde det avgöras att valideringsmetoden stämde överens med de fastställda resultaten. Slutligen studerades TensorFlow Object Detection APIs förmåga att förbättra prestandan som erhålls av ett visuellt dataset. Genom användning av ett modifierat dataset, kunde det fastställas att TensorFlow Object Detection API är ett lämpligt modifieringsverktyg som kan användas för att öka prestandan av ett visuellt dataset.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:mau-43345 |
Date | January 2021 |
Creators | Furundzic, Bojan, Mathisson, Fabian |
Publisher | Malmö universitet, Fakulteten för teknik och samhälle (TS), Malmö universitet, Fakulteten för teknik och samhälle (TS) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0027 seconds