In modern times, live video streaming events in companies has become an increasingly relevantmethod for communications. As a platform provider for these events, being able to deliverrelevant recommendations for event scheduling times to users is an important feature. A systemproviding relevant recommendations to users can be described as a recommender system.Recommender systems usually face issues such as having to be trained purely offline, astraining the system online can be costly or time-consuming, requiring manual user feedback.While many solutions and advancements have been made in recommender systems over theyears, such as contributions in the Netflix Prize, it still continues to be an active research topic.This work aims at designing a recommender system which observes users' past sequentialscheduling behavior to provide relevant recommendations for scheduling upcoming live videoevents. The developed recommender system uses reinforcement learning as a model, withcomponents such as a generative model to help it learn from offline data.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-478045 |
Date | January 2022 |
Creators | Franzén, Jonathan |
Publisher | Uppsala universitet, Institutionen för informationsteknologi |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | UPTEC IT, 1401-5749 ; 22015 |
Page generated in 0.0172 seconds