Submitted by Marlene Santos (marlene.bc.ufg@gmail.com) on 2014-09-03T21:30:23Z
No. of bitstreams: 2
DISSET Correção FINAL 03-07-14 FOLHA PDF.pdf: 1467526 bytes, checksum: 196b53fbd9a59de359b14f8fd82c2ee5 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2014-09-03T21:30:23Z (GMT). No. of bitstreams: 2
DISSET Correção FINAL 03-07-14 FOLHA PDF.pdf: 1467526 bytes, checksum: 196b53fbd9a59de359b14f8fd82c2ee5 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Previous issue date: 2014-01-29 / Fundação de Amparo à Pesquisa do Estado de Goiás - FAPEG / Paclitaxel (PTX) is a natural product extracted from the bark of the Pacific Yew and has numerous antitumor actions, including skin cancers. The topical treatment of skin and pre-cancerous lesions cancer is desired, since the systemic treatment has many side effects However, PTX to be incorporated into formulations suitable for it to penetrate the stratum corneum and skin tumors reached. Lipid nanoparticles have potential to increase drug retention in the stratum corneum, thus providing controlled release and great percutaneous absorption. Within this context, the aim of this study was to develop and characterize solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) containing the antineoplastic PTX and evaluate its permeation into the pig ear skin in vertical diffusion cells type "Franz". Quantification of PTX paclitaxel was performed by high performance liquid chromatography. The NLS and CLNs were obtained by the method of dilution of the microemulsion containingcetylpyridinium chloride, glyceryl behenate, triglycerides of caprylic / capric acid, polysorbate 80 and sorbitan trioleate 85. The particles were characterized by medium size, PdI, zeta potential, encapsulation efficiency, drug loading and recovery. Stability studies were carried out for a period of 30 days with storage at 4 °C (± 2 °C). Theskin permeation studies of the PTX nanoparticles were conducted in “Franz” type diffusion cells in pig ear skin. The NLS obtained showed average size of 314.1 ± 10.9 to 335.9 ± 0.9nm. The CLN obtained with more oil in the lipid matrix (CLN100)showed average size 270.6 ± 13.5 nm. The encapsulation efficiency of the systemsobtained was above 90% when 3.75% was added PTX formulations. The stability studies revealed a trend in increasing the size of the particles PdI along the storage period, but these differences are not statistically significant. The CLN100 increased about 3 times the amount of drug in the stratum corneum (SC) as compared to the administration of unencapsulated drug and also increased by 1.5 times the amount of PTX in the SC in relation to the topical application of other lipid particles. Thus, the lipid particles appear to be promising systems for topical application of PTX. / O paclitaxel (PTX) é um produto natural extraído da casca do Teixo do Pacífico e possui númeras ações antitumorais, inclusive em neoplasias cutâneas. O tratamento tópico do câncer de pele e de lesões pré-cancerígenas é almejado, visto que o tratamento sistêmico possui diversos efeitos colaterais. Entretanto, o PTX precisa ser incorporado em formulações adequadas para que o mesmo penetre no estrato córneo e atinja os tumores cutâneos. As nanopartículas lipídicas apresentampotencial para aumentar a retenção de fármacos no estrato córneo, proporcionandouma liberação controlada e um aumento na absorção percutânea. Dentro destecontexto, o objetivo deste trabalho foi desenvolver e caracterizar nanopartículaslipídicas sólidas (NLS) e carreadores lipídicos nanoestruturados (CLN) contendo o antineoplásico PTX e avaliar sua permeação cutânea em pele de orelha de suíno em células de difusão vertical tipo “Franz”. A quantificação do paclitaxel PTX foi realizada por cromatografia líquida de alta eficiência. As NLS e CLN foram obtidas pelo método de diluição da microemulsão contendo cloreto de cetilpiridínio, behenato de glicerila, triglicerídeos do ácido cáprico/ caprílico, polissorbato 80 e trioleato de sorbitano 85. As partículas foram caracterizadas quanto ao tamanho médio, PdI, potencial zeta, eficiência de encapsulação, carga de fármaco e recuperação. Os estudos de estabilidade foram realizados por um período de 30 dias com armazenamento a 4°C (± 2°C). Os estudos de permeação cutânea do PTX nas nanopartículas foram realizados em células de difusão tipo “Franz” em pele de orelha de suíno. As NLS obtidas apresentaram tamanho médio entre 314,1 ± 10,9 a 335,9 ± 0,9nm. Os CLN obtidos com mais óleo na matriz lipídica (CLN100), apresentaram tamanho médio 270,6 ± 13,5nm. A eficiência de encapsulação dos sistemas obtidos foi superior a 90% quando 3,75% de PTX foi adicionado as formulações. Nos estudos de estabilidade observou-se uma tendência no aumento do tamanho e PdI das partículas ao longo do período de armazenamento, porém estas diferenças não são estatisticamente significativas. Os CLN100 aumentaram aproximadamente 3 vezes a quantidade de fármaco no estrato córneo (EC) quando comparados com a administração do fármaco não encapsulado e, ainda ,aumentaram 1,5 vezes a quantidade de PTX no EC em relação à aplicação tópica das demais partículas lipídicas. Desta forma, as partículas lipídicas parecem ser sistemas promissores para aplicação tópica do PTX.
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.bc.ufg.br:tde/3004 |
Date | 29 January 2014 |
Creators | Tosta, Fabiana Vaz |
Contributors | Taveira, Stephânia Fleury, LIma, Eliana Martins, Taveira, Stephânia Fleury, Marreto, Ricardo Neves, Lopes, Flávio Marques |
Publisher | Universidade Federal de Goiás, Programa de Pós-graduação em Ciências Farmacêuticas (FF), UFG, Brasil, Faculdade Farmácia - FF (RG) |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFG, instname:Universidade Federal de Goiás, instacron:UFG |
Rights | http://creativecommons.org/licenses/by-nc-nd/4.0/, info:eu-repo/semantics/openAccess |
Relation | 824936988196152412, 600, 600, 600, 600, 6010281161524209375, 700814650651154363, -961409807440757778, ALEXANDER, A.; DWIVEDI, S.; AJAZUDDIN; GIRI, T. K.; SARAF, S.; SARAF, S.; TRIPATHI, D. k. Approaches for breaking the barriers of drug permeation through transdermal drug delivery. Journal of Controlled Release, v. 164 , n.1-2, p. 26-40, 2012. ALVAREZ-ROMAN, R.; NAIK, A.; KALIA, Y. N.; GUY, R.H.; FESSI, H. Skin penetration and distribution of polymeric nanoparticles. Journal of Controlled Release, v. 99, n. 1, p. 53-62, 2004. ASBIL, C. S.; MICHNIAK, B. B. Percutaneous penetration enhancers: local versus transdermal activity. Pharmaceutical Science & Technology Today, v.3, n.1.p. 3641, 2000. BARRY, B. W. Drug delivery routes in skin: a novel approach. Advanced Drug Delivery Reviews, v. 54, Supplement, n. 1, p. S31-S40, 2002. BAHNER, J. D.; BORDEAUX, J. S. Non-melanoma skin cancers: Photodynamic therapy, cryotherapy, 5-fluorouracil, imiquimod, diclofenac, or what? Facts and controversies. Clinics in Dermatology, v. 31, n. 6, p.792-798, 2013. BAROLI, B. M. Penetration of nanoparticles and nanomaterials in the skin: fiction or reality? Journal of Pharmaceutical Sciences, v. 99, n. 1, p.1-30, 2010. BOLZINGER, M. -A.; BRIANÇON, S.; PELLETIER, J.; CHEVALIER, Y. Penetration of drugs through skin, a complex rate-controlling membrane. Current Opinion in Colloid & Interface Science, v. 17, n. 3, p.156-165, 2012. BONTÉ, F.; SAUNOIS, A.; PINGUET, P.; MEYBECK A. Existence of a lipid gradient in the upper stratum corneum and its possible biological significance. Archives of Dermatological Research, v. 289, n. 2, p. 78-82, 1997. BOUWSTRA, J. A.; HONEYWELL-NGUYEN, P. L. Skin structure and mode of action of vesicles. Advanced Drug Delivery Reviews, v. 54, n.1, p. S41–S55, 2002. BORGIA, S. L.; REGEHLY, M.; SIVARAMAKRISHNAN, R.; MEHNERT, W.; KORTING, H. C.; DANKER, K.; RÖDER, B.; KRAMER, K. D.; SCHÄFER-KORTING, M. Lipid nanoparticles for skin penetration enhancement—correlation to drug localization within the particle matrix as determined by fluorescence and parelectric spectroscopy. Journal of Controlled Release, v. 110, n. 1, p. 151-163, 2005. BUCK, P. Skin barrier function: effect of age, race and inflammatory disease. The International Journal of Aromatherapy, v. 14, n. 2, p. 70-76, 2004. CORRÊA, A. G. Taxol: Da Descoberta ao Uso Terapêutico. Química Nova, v. 18, n. 5, p. 460- 467, 1995. DE CASTRO, I. A. Expressão Da Proteína P53 Em Diferentes Níveis De Fotoenvelhecimento. 2007. f. 75 Dissertação (Mestrado em Ciências Médicas), Universidade Federal do Rio Grande do Sul- Faculdade de Medicina – UFRGS, Porto Alegre, 2007. EL-SHABOURI, M. H. Positively charged nanoparticles for improving the oral bioavailability of cyclosporin-A. International Journal of Pharmaceutics, v. 249, n. 1-2, p.101-108, 2002. EKAMBARAM, P.; SATHALI, A. A. H.; PRIYANKA, K. Solid Lipid Nanoparticles: a Review. Scientific Reviews & Chemical Communications, v. 2, n.1, p. 80-102, 2012. FANG, J. -Y.; FANG, C. -L.; LIU, C. -H.; SU, Y. -H. Lipid nanoparticles as vehicles for topical psoralen delivery: Solid lipid nanoparticles (SLN) versus nanostructured lipid carriers (NLC). European Journal of Pharmaceutics and Biopharmaceutics, v. 70, n. 2, p. 633-640, 2008. FENG, S. -S.; ZHAO, L.; ZHANG, Z.; BHAKTA, G.; YIN WIN, K.; DONG,Y.; CHIEN, S. Chemotherapeutic engineering: Vitmamin E TPGS- emulsified nanoparticles of biodegradable polymers realized sustainable paclitaxel chemotherapy for 168 h in vivo. Chemical Enginering Science, v. 62, n. 23, p. 6641-6648, 2007. FESTA NETO, C. Imiquimod 5% cream in the treatment of superficial and nodular basal cell carcinomas: study of 10 cases. An bras Dermatol, v.77, n.6, p.693-698, 2002. FOOD AND DRUG ADMINISTRATION. Q2B Validation of Analytical Procedures: Methodology Guidance for Industry: Bioanalytical Method Validation. United States, 1996. FORMARIZ, T. P.; URBAN, M. C. C.; DA SILVA JÚNIOR, A. A.; GREMIÃO, M. P. D.; OLIVEIRA, A. G. D. Microemulsões e fases líquidas cristalinas como sistemas de liberação de fármacos. Revista Brasileira de Ciências Farmacêuticas, v. 41, n. 3, p. 301- 313, 2005. FRESNO CONTRERAS, M. J.; JIMÉNEZ SORIANO, M. M.; RAMÍREZ DIÉGUEZ, A. In vitro percutaneous absorption of all-trans retinoic acid applied in free form or encapsulated in stratum corneum lipid liposomes. International Journal of Pharmaceutics, v. 297, n. 1-2, p.134-145, 2005. GALICZYNSKI, E. M.; VIDIMOS, A. T. Non surgical Treatment of Non melanoma Skin Cancer. Dermatologic Clinics, v. 29, n. 2, p. 297-309, 2011. GASCO, M. R.; ANTONELLI, L.P. Method for Producing Solid Lipid Microspheres Having a Narrow Size Distribution, Patent Number: 5,250,236, 1993. GEORGETTI, S. R.; CASAGRANDE, R.; VERRI, W. A. Jr.; LOPEZ, R. F. V.; FONSECA, M. J. V. Evaluation of in vivo efficacy of topical formulations containing soybean extract. International Journal of Pharmaceutics, v. 352, n.1-2, p.189- 196, 2008. GORDON, R. SKIN Cancer: an Overview of Epidemiology and Risk Factors. Seminars in Oncology Nursing, v. 29, n. 3, p. 160-169, 2013. GREEN, M. R.; MANIKHAS, G. M.; ORLOV, S.; AFANASYEV, B.; MAKHSON, A. M.; BHAR, P.; HAWKINS, M. J. Abraxane®, a novel Cremophor®-free, albumin-bound particle form of paclitaxel for the treatment of advanced non-small-cell lung cancer. Annals of Oncology, v. 17, n. 8, p. 1263- 1268, 2006. HADRAFT, J. Passive enhancement strategies in topical and transdermal drug delivery. Internationl Journaul of Pharmaceutical, Amsterdam, v. 184, n. 1- 5, p. 1-6, 1999. Hanson Research Corporation. Vertical Diffusion Cell. Set-Up and manual operation. HUANG, Z. -R.; HUA, S. -C.; YANG, Y. -L. FANG, J. -Y. Development and evaluation of lipid nanoparticles for camptothecin delivery: a comparison of solid lipid nanoparticles, nanostructured lipid carriers, and lipid emulsion. Acta Pharmacologica Sinica, v. 29, n. 9, p. 1094-1102, 2008. HU, F. -Q.; JIANG, S. -P.; DU, Y. -Z.; YUAN, H.; YE, Y. -Q.; ZENG, S. Preparation and characterization of stearic acid nanostructured lipid carriers by solvent diffusion method in an aqueous system. Colloids and Surfaces B: Biointerfaces, v. 45, n. 3- 4, p. 167-173, 2005. JACOBI, U.; KAISER, M.; TOLL, R.; MANGELSDORF, S.; AUDRING, H.; OTBERG, N.; STERRY, W.; LADEMANN, J. Porcine ear skin: an in vitro model for human skin. Skin Research and Technology, v. 13, n. 1 p. 19- 24, 2007. JAGETIA, G. C.; NAYAK, V. Treatment of mice with a novel antineoplastic agenttaxol before irradiation increases the frequency of micronuclei in the bone marrow. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, v. 349, n. 2, p.219-227,1996. JENSEN L. B.; PETERSSON, K.; NIELSEN, H. M. In vitro penetration properties of solid lipid nanoparticles in intact and barrier-impaired skin. European Journal of Pharmaceutics and Biopharmaceutics, v. 79, n. 1, p. 68-75, 2011. JOSHI, M.; PATRAVALE, V. Nanostructured lipid carrier (NLC) based gel of celecoxib. International Journal of Pharmaceutics, v. 346, n. 1-2, p.124-132, 2008. KILFOYLE, B.E.; SHEIHET, L.; ZHANG, Z.; LAOHOO, M.; KOHN, J.; MICHNIAKKOHN, B.B. Development of paclitaxel-TyroSpheres for topical skin treatment. Journal of Controlled Release, v. 163, n. 1, p.18- 24, 2012. KINGSTON, D. G. I. Taxol, a molecule for all seasons. Chemical Communications, n. 10, p. 867-880, 2001. KNOX, C.; LAW, V.; JEWISON, T.; LIU, P.; LY, S.; FROLKIS, A.; PON, A.; BANCO, K.; MAK, C.; NEVEU, V.; DJOUMBOU, Y.; EISNER, R.; GUO, A. C.; WISHART, D. S. DrugBank 3.0: a comprehensive resource for 'omics' research on drugs. Nucleic Acids Research, v. 39. Database issue, p. D1035-41, 2011. KOHEN, R.; GATI, I. Skin low molecular weight antioxidants and their role in aging and in oxidative stress. Toxicology, v.148, n. 2-3, p.149-157, 2000. KÜCHLER, S.; HERRMANN, W.; PANEK-MINKIN, G.; BLASCHKE, T.; ZOSCHKE, C.; KRAMER, K. D.; BITTL, R.; SCHÄFER-KORTING, M. SLN for topical application in skin diseases—characterization of drug–carrier and carrier–target interactions. International Journal of Pharmaceutics, v. 390, n. 2, p. 225-233, 2010. KUMAR, S.; RANDHAWA, J. K. High melting lipid based approach for drug delivery: solid lipid nanoparticles. Materials Science and Engineering C, v. 33, n. 4, p. 1842- 1852, 2013. KUNTSCHE, J.; BUNJES, H.; FAHR, A.; PAPPINEN, S.; RÖNKKÖ, S.; SUHONEN, M.; URTTI, A. Interaction of lipid nanoparticles with human epidermis and an organotypic cell culture model. International Journal of Pharmaceutics, v. 354, n. 1- 2, p. 180-195, 2008. LA PORTA, C. A.M. SKIN CANCERS – RISK FACTORS, PREVENTION AND THERAPY. In: TAVEIRA, S. F.; LOPEZ, R. F. V. Topical Administration of Anticancer Drugs for Skin Cancer Treatment. 1 ed. Croatia: Ed: InTechopen, 2011, p. 247-272. LIPPACHER, A.; MÜLLER, R.H.; MÄDER, K. Preparation of semi solid drug carries for topical application based on solid lipid nanoparticles. International Journal of Pharmaceutics, v.124, n.1-2, p.9-12, 2001. LOPES, L. B.; REED, R. A simple and rapid method to assess lycopene in multiple layers of skin samples. Biomedical Chromatography, v.24, n. 2, p.154-159, 2009. LOVE, W. E.; BERNHARD, J. D.; BORDEAUX, J. S. Topical Imiquimod or Fluorouracil Therapy for Basal and Squamous Cell Carcinoma. Arch Dermatol, v. 145, n. 2, p. 1431-1438, 2009. MAIA, C. S.; MEHNERT, W.; SCHAFER- K, M. Solidi lipid nanoparticles as drug carriers for topical glucocorticoids. International Journal of Pharmaceutics, v. 196, n.2, p. 165- 167, 2000. MADAN, V.; LEAR, J. T.; SZEIMIES, R. -M. Non-melanoma skin cancer. The Lancet, v. 375, n. 9715 , p. 673-685, 2010. MAIONE-SILVA, L. Nanopartículas lipídicas sólidas contendo genisteína para uso tópico. 2011. f. 73 Dissertação (Mestrado em Ciências Farmacêuticas), Universidade Federal de Goiás, Goiânia. 2012. MARJUKKA SUHONEN, T.; BOUWSTRA, J. A.; URTTI, A. Chemical enhancement of percutaneous absorption in relation to stratum corneum structural alterations. Journal of Controlled Release, v. 59, n. 2, p. 149-161, 1999. MEHNERT, W.; MÄDER, K. Solid lipid nanoparticles: production, characterization and applications. Advanced Drug Delivery Reviews, v. 47, n. 2-3, p.165-196, 2001. MEHNERT, W.; MÄDER, K. Solid lipid nanoparticles: production, characterization and applications. Advanced Drug Delivery Reviews, v. 64, n. 0, p. 83- 101, 2012. MENDES, L. P. Sistemas nanoestruturados multicompartimentais para coencapsulação e liberação controlada de paclitaxel e genisteína: desenvolvimento, caracterização e avaliação da atividade antitumoral in vivo. 2012. 60 f. Dissertação (Mestrado em Ciências Farmacêuticas), Universidade Federal de Goiás, Goiânia. 2012. MENON, G. K. New insights into skin structure: scratching the surface. Advanced Drug Delivery Reviews, v. 54, n.1, p. S3-S17, 2002. MIDENA, M.; ANGELI, C. D.; VALENTI, M.; DE BELVIS, V.; BOCCATO, P. Treatment of conjunctival squamous cell carcinoma with topical 5-fluorouracil. Ophthalmol, v. 84, n. 3 p. 268-272, 2000. MITRI, K.; SHEGOKAR, R.; GOHLA, S.; ANSELMI, C.; MÜLLER, R.H. Lipid nanocarriers for dermal delivery of lutein: preparation, characterization, stability and performance. International Journal of Pharmaceutics, v. 414, n.1- 2, p. 267- 275, 2011. MICHNIAK, B. B.; PLAYER, M. R.; CHAPMAN JR, J. M.; SOWELL, SR Azone analogues as penetration enhancers: effect of different vehicles on hydrocortisone acetate skin permeation and retention. Journal of Controlled Release, v. 32, n. 1, p. 147-154, 1994. MOSER, K.; KRIWER, K.; NAIK, A.; KALIA, Y. N.; GUY, R. H. Passive skin penetration enhancement and its quantification in vitro. European Journal of Pharmaceutics and Biopharmaceutcs, v. 52, n. 2, p.103-112, 2001. MÜLLER, R. H.; MÄDER, K.; GOHLA, S. Solid lipid nanoparticles (SLN) for controlled drug delivery: a review of the state of the art. European Journal of Pharmaceutics and Biopharmaceutics, v. 50, n. 1, p. 161-177, 2000. MÜLLER, R. H.; RADTKE, M.; WISSING, S. A. Nanostructured lipid matrices for improved microencapsulation of drugs. International Journal of Pharmaceutics, v. 242, n. 1-2, p. 121-128, 2002. NAIK, A.; KALIA, Y. N.; GUY, R. H. Transdermal drug delivery: overcoming the skin’s barrier function. Pharmaceutical Science & Technology Today, v. 3, n. 9, p. 318326, 2000. NSEREKO, S.; AMIJI, M. Localized delivery of paclitaxel in solid tumors from biodegradable chitin microparticle formulations. Biomaterials, v. 23, n. 13, p. 2723- 2731, 2002. NEUBERT, R. H. H. Potentials of new nanocarriers for dermal and transdermal drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, v. 77, n. 1, p. 1-2, 2011. OBEIDAT, W. M.; SCHWABE, K.; MÜLLER, R. H.; KECK, C. M. Preservation of nanostructured lipid carriers (NLC). European Journal of Pharmaceutics and Biopharmaceutics, v. 76, n. 1, p. 56-67, 2010. OLBRICH, C.; BAKOWSKY, U.; LEHR, C.-M.; MÜLLER, R. H.; KNEUER, C. Cationicsolid-lipid nanoparticles can efficiently bind and transfect plasmid DNA. Journal of Controlled Release, v. 77, n. 3, p. 345- 355, 2001. PAOLINO, D.; CELIA, C.; TRAPASSO, E.; CILURZO, F.; FRESTA, M. Paclitaxelloaded ethosomes®: Potential treatment of squamous cell carcinoma, a malignant transformation of actinic keratoses. European Journal of Pharmaceutics andBiopharmaceutics, v. 81, n. 1, p. 102-112, 2012. PARDEIKE, J.; HOMMOSS, A.; MÜLLER, R.H. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. International Journal of Pharmaceutics, v. 366, n. 1-2, p. 170-184, 2009. PEIRA, E.; CARLOTTI, M. E.; TROTTA, C.; CAVALLI, R.; TROTTA, M. Positively charged icroemulsions for topical application. International Journal of Pharmaceutics, v. 346, n. 1-2, p. 119-123, 2008. PELTIER, S.; OGER, J. –M.; LAGARCE, F.; COUET, W.; BENOÎT, J. –P. Enhanced oral paclitaxel bioavailability after administration of paclitaxel-loaded lipidic nanocapsules. Pharmaceutical Research, v. 23, n. 6, p. 1243-1250, 2006. PROW, T. W.; GRICE, J. E.; LIN, L. L.; FAYE, R.; BUTLER, M.; BECKER, W.; WURM, E. M.T.; YOONG, C.; ROBERTSON, T.A.; SOYER, H. P.; ROBERTS, M. S. Nanoparticles and microparticles for skin drug delivery. Advanced Drug Delivery Reviews, v. 63, n. 6, p. 470- 491, 2011. RAO, S.; KRAUSS, N. E.; HEERDING, J. M.; SWINDELL, C. S.; RINGELL, I.; ORR, G. A.; HORWITZ, S. B. 3‘-(p-Azidobenzamido) taxol Photolabels the N-terminal31 Amino Acids of p-Tubulin. The Journal of Biological Chemistry, v. 269, n. 5, p. 3132-3134, 1994. ROWINSKY, E. K.; DONEHOWER, R. C. Paclitaxel (taxol). The New England Journal of Medicine, v. 332, n.15, p.1004-1014, 1995. SCHÄFER-KORTING, M.; MEHNERT, W.; KORTING, H. -C. Lipid nanoparticles for improved topical application of drugs for skin diseases. Advanced Drug Delivery Reviews, v. 59, n. 6, p. 427-443, 2007. SHARMA, P.; GANTA, S.; DENNY, W. A.; GARG, S. Formulation and pharmacokinetics of lipid nanoparticles of a chemically sensitive nitrogen mustard derivative: Chlorambucil. International Journal of Pharmaceutics, v. 367, n. 1-2 p.187-194, 2009. SHIM, W. S.; KIM, J. -H.; KIM, k.; KIM, Y. -S.; PARK, R. -W.; KIM, I. -S.; KWON, I. C.; LEE, D. S. pH- and temperature-sensitive, injectable, biodegradable block copolymer hydrogels as carriers for paclitaxel. International Journal of Pharmaceutics, v. 331, n.1, p.11-18, 2007. SINGLA, A. K; GARG, A.; AGGARWAL, D. Paclitaxel and its formulations. International Journal of Pharmaceutics, v. 235, n. 1-2, p. 179-192, 2002. SKIN CARE FORUM BASF. Poster Skin Care Forum illustrations, june 2011. Disponível em: <http://www.skin-care-forum.basf.com/ > Acesso em 17/10/2013. SOUZA, M. V. N. Novos produtos naturais capazes de atuar na estabilização de microtúbulos, um importante alvo no combate ao câncer. Química Nova, v. 27, n.2, p.308- 312, 2004. SOUZA, L. G.; SILVA, E. J.; MARTINS, A. L. L.; MOTA, M. F.; BRAGA, R. C.; LIMA, E. M.; VALADARES, M. C.; TAVEIRA, S. F.; MARRETO, R. N. Development of topotecan loaded lipid nanoparticles for chemical stabilization and prolonged release. European Journal of Pharmaceutics and Biopharmaceutics, v. 79, n.1, p.189-196, 2011. TAVEIRA, S. F.; NOMIZO, A.; LOPEZ, R. F. V. Effect of the iontophoresis of a chitosan gel on doxorubicin skin penetration and cytotoxicity. Journal of Controlled Release, v. 134, n. 1, p. 35-40, 2009. TRICKLER, W. J.; NAGVEKAR, A. A.; DASH, A. K. A. Novel Nanoparticle Formulation for Sustained Paclitaxel Delivery. American Association of Pharmaceutical Scientists, v. 9, n. 2, p. 486-493, 2008. ÜNER, M. Preparation, characterization and physico-chemical properties of SolidLipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC): Their benefits as colloidal drug carrier systems. Die Pharmazie - An International Journal of Pharmaceutical Sciences, v. 61, n. 5, p. 375-386, 2006. ÜNER, M.; YENER, G. Importance of solid lipid nanoparticles (SLN) in variousadministration routes and future perspectives. International Journal of Nanomedicine, v. 2, n. 3, p. 289-300, 2007. WIERNIK, P. H.; SCHWARTZ, E. L.; EINZIG, A.; STRAUMAN, J. J.; LIPTON, R. B.; DUTCHER, J. P. Phase I trial of taxol given as a 24-hour infusion every 21 days: responses observed in metastatic melanoma. Journal of Clinical Oncology, v. 5, n. 8, p. 1232-1239,1987. WISSING, S. A.; KAYSER, O.; MULLER, R. H. Solid lipid nanoparticles for parenteral drug delivery. Advanced Drug Delivery Reviews, v. 56, n. 9, p. 1257-1272, 2004. YANG, X. -Y.; LI, Y. -X.; LI, M.; ZHANG, L.; FENG, L. -X.; ZHANG, N. Hyaluronic acid-coated nanostructured lipid carriers for targeting paclitaxel to cancer. Cancer Letters, v. 334, n. 2, p. 338-445, 2013. YARDLEY, D. A. nab-Paclitaxel mechanisms of action and delivery. Journal of Controlled Release, v. 170, n. 3, p. 365-372, 2013. YUAN, H.; MIAO, J.; DU, Y-Z.; YOU, J.; HU, F-Q.; ZENG, S. Cellular uptake of solidlipid anoparticles and cytotoxicity of encapsulated paclitaxel in A549 cancer cells. International Journal of Pharmaceutics, v. 348, n. 1-2, p. 137-145, 2008. ZHANG, J.; SMITH, E. Percutaneous permeation of betamethasone 17-valerate incorporated in lipid nanoparticles. Journal of Pharmaceutical Sciences, v. 100, n. 3, p. 896-903, 2011. |
Page generated in 0.0323 seconds