Return to search

Communication synthesis of networks-on-chip (NoC)

The emergence of networks-on-chip (NoC) as the communication infrastructure solution
for complex multi-core SoCs presents communication synthesis challenges. This
dissertation addresses the design and run-time management aspects of communication
synthesis. Design reuse and the infeasibility of Intellectual Property (IP) core
interface redesign, requires the development of a Core-Network Interface (CNI) which
allows them to communicate over the on-chip network. The absence of intelligence
amongst the NoC components, entails the introduction of a CNI capable of not only
providing basic packetization and depacketization, but also other essential services
such as reliability, power management, reconguration and test support. A generic
CNI architecture providing these services for NoCs is proposed and evaluated in this
dissertation.
Rising on-chip communication power costs and reliability concerns due to these,
motivate the development of a peak power management technique that is both scalable
to dierent NoCs and adaptable to varying trac congurations. A scalable
and adaptable peak power management technique - SAPP - is proposed and demonstrated.
Latency and throughput improvements observed with SAPP demonstrate its
superiority over existing techniques.
Increasing design complexity make prediction of design lifetimes dicult. Post SoC deployment, an on-line health monitoring scheme, is essential to maintain con-
dence in the correct operation of on-chip cores. The rising design complexity and
IP core test costs makes non-concurrent testing of the IP cores infeasible. An on-line
scheme capable of managing IP core test in the presence of executing applications is
essential. Such a scheme ensures application performance and system power budgets
are eciently managed. This dissertation proposes Concurrent On-Line Test (COLT)
for NoC-based systems and demonstrates how a robust implementation of COLT using
a Test Infrastructure-IP (TI-IP) can be used to maintain condence in the correct
operation of the SoC.

Identiferoai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/85789
Date10 October 2008
CreatorsBhojwani, Praveen Sunder
ContributorsMahapatra, Rabi N.
PublisherTexas A&M University
Source SetsTexas A and M University
Languageen_US
Detected LanguageEnglish
TypeBook, Thesis, Electronic Dissertation, text
Formatelectronic, born digital

Page generated in 0.0018 seconds