Infrasound is undetectable by the human ear and excessive exposure may be a substantial health risk. Low frequency sound propagates through walls with minimal attenuation, making it difficult to avoid. This study interprets the results from both analytical calculations and simulations of pressure waves propagating through a wall in one dimension. The wall is thin compared to the wavelength; the model implements properties of three materials commonly used in walls. The results indicate that the geometry of the wall, most importantly the small ratio between wall width and wavelength, is the prime reason for the low levels of attenuation observed in transmitted amplitudes of low frequency sounds, and that damping is negligible for infrasound. Furthermore, a one-dimensional homogeneous wall model gives rise to periodicity in the transmitted amplitude, which is not observed in experiments. Future studies should prioritize the introduction of at least one more dimension to the model, to allow for variable angles of incidence.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-444632 |
Date | January 2021 |
Creators | Berglund, Alexander, Herbai, Fredrik, Wedén, Jonas |
Publisher | Uppsala universitet, Avdelningen för beräkningsvetenskap |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | MATVET-F |
Page generated in 0.0018 seconds