CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / Motivado pelo sucesso de Linked Data e impulsionado pelo crescimento do nÃmero de fontes de dados em formato RDF disponÃveis na Web, novos desafios para processamento de consultas estÃo emergindo, especialmente em configuraÃÃes distribuÃdas. No ambiente de Linked Data, à possÃvel executar consultas federadas, as quais envolvem junÃÃes de dados fornecidos por mÃltiplas fontes. O termo consulta federada à usado quando queremos prover soluÃÃes baseadas em informaÃÃes obtidas de diferentes fontes. Nesse sentido, a concepÃÃo de novos algoritmos e estratÃgias adaptativas para a execuÃÃo de junÃÃes de forma eficiente constitui um desafio importante. Nesse trabalho, apresentamos uma soluÃÃo para a execuÃÃo adaptativa de operaÃÃes de junÃÃes de dados em consultas federadas. A execuÃÃo da operaÃÃo de junÃÃo adaptativa entre informaÃÃes contidas em fontes de dados distribuÃdas baseia-se em estatÃsticas, que sÃo coletadas em tempo de execuÃÃo. Uma informaÃÃo estatÃstica sobre uma
determinada fontes seria, por exemplo, o tempo decorrido (Elapsed Time) para obter algum resultado. Para obter as informaÃÃes estatÃsticas atualizadas, usamos uma estratÃgia que coleta essas informaÃÃes durante a execuÃÃo da consulta e,logo apÃs, sÃo armazenadas em uma base de dados local, na qual denominamos como catÃlogo de informaÃÃes estatÃsticas. / Motivated by the success of Linked Data and driven by the growing number of data
sources into RDF files available on the web, new challenges for query processing are emerging,
especially in distributed settings. These environments allow distributed execution of federated
queries, which involve joining data provided by multiple sources, which are often unstable. In
this sense, the design of new algorithms and adaptive strategies for efficiently implementing
joins is a major challenge. In this paper, we present a solution to the adaptive joins execution in
federated queries. The adaptative context of distributed data sources is based on statistics that
are collected at runtime. For this, we use a module that updates the information in the catalog
as the query is executed. The module works in parallel with the query processor.
Identifer | oai:union.ndltd.org:IBICT/oai:www.teses.ufc.br:8074 |
Date | 31 October 2013 |
Creators | Macedo Sousa Maia |
Contributors | VÃnia Maria Ponte Vidal, Josà Maria da Silva Monteiro Filho, FÃbio Andrà Machado Porto, Ana Maria de Carvalho Moura |
Publisher | Universidade Federal do CearÃ, Programa de PÃs-GraduaÃÃo em CiÃncia da ComputaÃÃo, UFC, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFC, instname:Universidade Federal do Ceará, instacron:UFC |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0028 seconds