Spelling suggestions: "subject:"consultas federadas"" "subject:"consultas moderadas""
1 |
ASBJOIN: uma estratégia adaptativa para consultas envolvendo operadores de junção em Linked data / ASBJOIN: an adaptive strategy for queries involving join operators on Linked dateMaia, Macedo Sousa January 2013 (has links)
MAIA, M. S. ASBJOIN: uma estratégia adaptativa para consultas envolvendo operadores de junção em Linked data. 2013. 97 f. Dissertação (Mestrado em Ciência da Computação) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2013. / Submitted by Daniel Eduardo Alencar da Silva (dealencar.silva@gmail.com) on 2015-01-23T20:44:30Z
No. of bitstreams: 1
2013_dis_msmaia.pdf: 2212047 bytes, checksum: 8fa549e690c4186b7f45d9eaa02e0029 (MD5) / Approved for entry into archive by Rocilda Sales(rocilda@ufc.br) on 2015-02-09T15:46:07Z (GMT) No. of bitstreams: 1
2013_dis_msmaia.pdf: 2212047 bytes, checksum: 8fa549e690c4186b7f45d9eaa02e0029 (MD5) / Made available in DSpace on 2015-02-09T15:46:07Z (GMT). No. of bitstreams: 1
2013_dis_msmaia.pdf: 2212047 bytes, checksum: 8fa549e690c4186b7f45d9eaa02e0029 (MD5)
Previous issue date: 2013 / Motivated by the success of Linked Data and driven by the growing number of data sources into RDF files available on the web, new challenges for query processing are emerging, especially in distributed settings. These environments allow distributed execution of federated queries, which involve joining data provided by multiple sources, which are often unstable. In this sense, the design of new algorithms and adaptive strategies for efficiently implementing joins is a major challenge. In this paper, we present a solution to the adaptive joins execution in federated queries. The adaptative context of distributed data sources is based on statistics that are collected at runtime. For this, we use a module that updates the information in the catalog as the query is executed. The module works in parallel with the query processor. / Motivado pelo sucesso de Linked Data e impulsionado pelo crescimento do número de fontes de dados em formato RDF disponíveis na Web, novos desafios para processamento de consultas estão emergindo, especialmente em configurações distribuídas. No ambiente de Linked Data, é possível executar consultas federadas, as quais envolvem junções de dados fornecidos por múltiplas fontes. O termo consulta federada é usado quando queremos prover soluções baseadas em informações obtidas de diferentes fontes. Nesse sentido, a concepção de novos algoritmos e estratégias adaptativas para a execução de junções de forma eficiente constitui um desafio importante. Nesse trabalho, apresentamos uma solução para a execução adaptativa de operações de junções de dados em consultas federadas. A execução da operação de junção adaptativa entre informações contidas em fontes de dados distribuídas baseia-se em estatísticas, que são coletadas em tempo de execução. Uma informação estatística sobre uma determinada fontes seria, por exemplo, o tempo decorrido (Elapsed Time) para obter algum resultado. Para obter as informações estatísticas atualizadas, usamos uma estratégia que coleta essas informações durante a execução da consulta e,logo após, são armazenadas em uma base de dados local, na qual denominamos como catálogo de informações estatísticas.
|
2 |
Um ambiente para processamento de consultas federadas em linked data Mashups / An environment for federated query processing in linked data MashupsMagalhães, Regis Pires January 2012 (has links)
MAGALHÃES, Regis Pires. Um ambiente para processamento de consultas federadas em linked data Mashups. 2012. 117 f. Dissertação (Mestrado em ciência da computação)- Universidade Federal do Ceará, Fortaleza-CE, 2012. / Submitted by Elineudson Ribeiro (elineudsonr@gmail.com) on 2016-07-12T16:08:12Z
No. of bitstreams: 1
2012_dis_rpmagalhaes.pdf: 2883929 bytes, checksum: 1a04484a7e875cd8ead588d91693577a (MD5) / Approved for entry into archive by Rocilda Sales (rocilda@ufc.br) on 2016-07-21T16:05:44Z (GMT) No. of bitstreams: 1
2012_dis_rpmagalhaes.pdf: 2883929 bytes, checksum: 1a04484a7e875cd8ead588d91693577a (MD5) / Made available in DSpace on 2016-07-21T16:05:44Z (GMT). No. of bitstreams: 1
2012_dis_rpmagalhaes.pdf: 2883929 bytes, checksum: 1a04484a7e875cd8ead588d91693577a (MD5)
Previous issue date: 2012 / Semantic Web technologies like RDF model, URIs and SPARQL query language, can reduce the complexity of data integration by making use of properly established and described links between sources.However, the difficulty to formulate distributed queries has been a challenge to harness the potential of these technologies due to autonomy, distribution and vocabulary of heterogeneous data sources. This scenario demands effective mechanisms for integrating data on Linked Data.Linked Data Mashups allow users to query and integrate structured and linked data on the web. This work proposes two architectures of Linked Data Mashups: one based on the use of mediators and the other based on the use of Linked Data Mashup Services (LIDMS). A module for efficient execution of federated query plans on Linked Data has been developed and is a component common to both proposed architectures.The execution module feasibility has been demonstrated through experiments. Furthermore, a LIDMS execution Web environment also has been defined and implemented as contributions of this work. / Tecnologias da Web Semântica como modelo RDF, URIs e linguagem de consulta SPARQL, podem reduzir a complexidade de integração de dados ao fazer uso de ligações corretamente estabelecidas e descritas entre fontes.No entanto, a dificuldade para formulação de consultas distribuídas tem sido um obstáculo para aproveitar o potencial dessas tecnologias em virtude da autonomia, distribuição e vocabulário heterogêneo das fontes de dados.Esse cenário demanda mecanismos eficientes para integração de dados sobre Linked Data.Linked Data Mashups permitem aos usuários executar consultas e integrar dados estruturados e vinculados na web.O presente trabalho propõe duas arquiteturas de Linked Data Mashups:uma delas baseada no uso de mediadores e a outra baseada no uso de Linked Data Mashup Services (LIDMS). Um módulo para execução eficiente de planos de consulta federados sobre Linked Data foi desenvolvido e é um componente comum a ambas as arquiteturas propostas.A viabilidade do módulo de execução foi demonstrada através de experimentos. Além disso, um ambiente Web para execução de LIDMS também foi definido e implementado como contribuições deste trabalho.
|
3 |
ASBJOIN: uma estratÃgia adaptativa para consultas envolvendo operadores de junÃÃo em Linked data / ASBJOIN: an adaptive strategy for queries involving join operators on Linked dateMacedo Sousa Maia 31 October 2013 (has links)
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / Motivado pelo sucesso de Linked Data e impulsionado pelo crescimento do nÃmero de fontes de dados em formato RDF disponÃveis na Web, novos desafios para processamento de consultas estÃo emergindo, especialmente em configuraÃÃes distribuÃdas. No ambiente de Linked Data, à possÃvel executar consultas federadas, as quais envolvem junÃÃes de dados fornecidos por mÃltiplas fontes. O termo consulta federada à usado quando queremos prover soluÃÃes baseadas em informaÃÃes obtidas de diferentes fontes. Nesse sentido, a concepÃÃo de novos algoritmos e estratÃgias adaptativas para a execuÃÃo de junÃÃes de forma eficiente constitui um desafio importante. Nesse trabalho, apresentamos uma soluÃÃo para a execuÃÃo adaptativa de operaÃÃes de junÃÃes de dados em consultas federadas. A execuÃÃo da operaÃÃo de junÃÃo adaptativa entre informaÃÃes contidas em fontes de dados distribuÃdas baseia-se em estatÃsticas, que sÃo coletadas em tempo de execuÃÃo. Uma informaÃÃo estatÃstica sobre uma
determinada fontes seria, por exemplo, o tempo decorrido (Elapsed Time) para obter algum resultado. Para obter as informaÃÃes estatÃsticas atualizadas, usamos uma estratÃgia que coleta essas informaÃÃes durante a execuÃÃo da consulta e,logo apÃs, sÃo armazenadas em uma base de dados local, na qual denominamos como catÃlogo de informaÃÃes estatÃsticas. / Motivated by the success of Linked Data and driven by the growing number of data
sources into RDF files available on the web, new challenges for query processing are emerging,
especially in distributed settings. These environments allow distributed execution of federated
queries, which involve joining data provided by multiple sources, which are often unstable. In
this sense, the design of new algorithms and adaptive strategies for efficiently implementing
joins is a major challenge. In this paper, we present a solution to the adaptive joins execution in
federated queries. The adaptative context of distributed data sources is based on statistics that
are collected at runtime. For this, we use a module that updates the information in the catalog
as the query is executed. The module works in parallel with the query processor.
|
4 |
Um Ambiente para Processamento de Consultas Federadas em Linked Data Mashups / An Environment for Federated Query Processing in Linked Data MashupsRegis Pires MagalhÃes 25 May 2012 (has links)
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / Tecnologias da Web SemÃntica como modelo RDF, URIs e linguagem de consulta SPARQL, podem reduzir a complexidade de integraÃÃo de dados ao fazer uso de ligaÃÃes corretamente estabelecidas e descritas entre fontes.No entanto, a dificuldade para formulaÃÃo de consultas distribuÃdas tem sido um obstÃculo para aproveitar o potencial dessas tecnologias em virtude da autonomia, distribuiÃÃo e vocabulÃrio heterogÃneo das fontes de dados.Esse cenÃrio demanda mecanismos eficientes para integraÃÃo de dados sobre Linked Data.Linked Data Mashups permitem aos usuÃrios executar consultas e integrar dados estruturados e vinculados na web.O presente trabalho propÃe duas arquiteturas de Linked Data Mashups:uma delas baseada no uso de mediadores e a outra baseada no uso de Linked Data Mashup Services (LIDMS). Um mÃdulo para execuÃÃo eficiente de planos de consulta federados sobre Linked Data foi desenvolvido e à um componente comum a ambas as arquiteturas propostas.A viabilidade do mÃdulo de execuÃÃo foi demonstrada atravÃs de experimentos. AlÃm disso, um ambiente Web para execuÃÃo de LIDMS tambÃm foi definido e implementado como contribuiÃÃes deste trabalho. / Semantic Web technologies like RDF model, URIs and SPARQL query language, can reduce the complexity of data integration by making use of properly established and described links between sources.However, the difficulty to formulate distributed queries has been a challenge to harness the potential of these technologies due to autonomy, distribution and vocabulary of heterogeneous data sources. This scenario demands effective mechanisms for integrating data on Linked Data.Linked Data Mashups allow users to query and integrate structured and linked data on the web. This work proposes two architectures of Linked Data Mashups: one based on the use of mediators and the other based on the use of Linked Data Mashup Services (LIDMS). A module for efficient execution of federated query plans on Linked Data has been developed and is a component common to both proposed architectures.The execution module feasibility has been demonstrated through experiments. Furthermore, a LIDMS execution Web environment also has been defined and implemented as contributions of this work.
|
5 |
[pt] BUSCA POR PALAVRAS-CHAVE SOBRE GRAFOS RDF FEDERADOS EXPLORANDO SEUS ESQUEMAS / [en] KEYWORD SEARCH OVER FEDERATED RDF GRAPHS BY EXPLORING THEIR SCHEMASYENIER TORRES IZQUIERDO 28 July 2017 (has links)
[pt] O Resource Description Framework (RDF) foi adotado como uma recomendação do W3C em 1999 e hoje é um padrão para troca de dados na Web. De fato, uma grande quantidade de dados foi convertida em RDF, muitas vezes em vários conjuntos de dados fisicamente distribuídos ao longo de diferentes localizações. A linguagem de consulta SPARQL (sigla do inglês de SPARQL Protocol and RDF Query Language) foi oficialmente introduzido em 2008 para recuperar dados RDF e fornecer endpoints para consultar fontes distribuídas. Uma maneira alternativa de acessar conjuntos de dados RDF é usar consultas baseadas em palavras-chave, uma área que tem sido extensivamente pesquisada, com foco recente no conteúdo da Web. Esta dissertação descreve uma estratégia para compilar consultas baseadas em palavras-chave em consultas SPARQL federadas sobre conjuntos de dados RDF distribuídos, assumindo que cada conjunto de dados RDF tem um esquema e que a federação tem um esquema mediado. O processo de compilação da consulta SPARQL federada é explicado em detalhe, incluindo como computar o conjunto de joins externos entre as subconsultas locais geradas, como combinar, com a ajuda de cláusulas UNION, os resultados de consultas locais que não têm joins entre elas, e como construir a cláusula TARGET, de acordo com a composição da cláusula WHERE. Finalmente, a dissertação cobre experimentos com dados do mundo real para validar a implementação. / [en] The Resource Description Framework (RDF) was adopted as a W3C recommendation in 1999 and today is a standard for exchanging data in the Web. Indeed, a large amount of data has been converted to RDF, often as multiple datasets physically distributed over different locations. The SPARQL Protocol and RDF Query Language (SPARQL) was officially introduced in 2008 to retrieve RDF datasets and provide endpoints to query distributed sources. An alternative way to access RDF datasets is to use keyword-based queries, an area that has been extensively researched, with a recent focus on Web content. This dissertation describes a strategy to compile keyword-based queries into federated SPARQL queries over distributed RDF datasets, under the assumption that each RDF dataset has a schema and that the federation has a mediated schema. The compilation process of the federated SPARQL query is explained in detail, including how to compute a set of external joins between the local subqueries, how to combine, with the help of the UNION clauses, the results of local queries which have no external joins between them, and how to construct the TARGET clause, according to the structure of the WHERE clause. Finally, the dissertation covers experiments with real-world data to validate the implementation.
|
Page generated in 0.0538 seconds