Return to search

Performance evaluation of a brackish water reverse osmosis pilot-plant desalination process under different operating conditions: Experimental study

Yes / The Reverse Osmosis (RO) input parameters have key roles in mass transport and performance indicators. Several studies can be found in open literature. However, an experimental research on evaluating the brackish water RO input parameters influence on the performance metrics with justifying the interference between them via a robust model has not been addressed yet. This paper aims to design, construct, and experimentally evaluate the performance of a 50 m3/d RO pilot-plant to desalinate brackish water in Shahid Chamran University of Ahvaz, Iran. Water samples with various salinity ranging from 1000 to 5000 ppm were fed to a semi-permeable membrane under variable operating pressures from 5 to 13 bar. By evaluating permeate flux and brine flowrate, permeate and brine salinities, membrane water recovery, and salt rejection, some logical relations were derived. The results indicated that the performance of an RO unit is largely dependent on feed pressure and feed salinity. At a fixed feed concentration, an almost linear relationship was found to relate feed pressure and both permeate and brine flowrates. Statistically, it was found that 13 bar feed pressure results in a maximum salt rejection of 98.8% at a minimum permeate concentration of 12 ppm. Moreover, 73.3% reduction in permeate salinity and 30.8% increase in brine salinity are reported when feed pressure increases from 5 to 13 bar. Finally, it is concluded that the water transport coefficient is a function of feed pressure, salinity, and temperature, which is experimentally estimated to be 2.8552 L/(m2 h bar).

Identiferoai:union.ndltd.org:BRADFORD/oai:bradscholars.brad.ac.uk:10454/18920
Date28 March 2022
CreatorsAnsari, M., Al-Obaidi, Mudhar A.A.R., Hadadian, Z., Moradi, M., Haghighi, A., Mujtaba, Iqbal M.
Source SetsBradford Scholars
LanguageEnglish
Detected LanguageEnglish
TypeArticle, Published version
Rights© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license., CC-BY-NC-ND

Page generated in 0.0026 seconds