Return to search

Análise de sentimentos em tíquetes para o suporte de TI / Sentiment Analysis in Tickets for IT Support

Análise de Sentimentos/Mineração de Opinião é adotada na engenharia de software para questões como usabilidade e sentimentos de desenvolvedores em projetos. Este trabalho propõe métodos para avaliar os sentimentos presentes em tíquetes abertos à área de suporte de TI. Há diversos tipos de tíquetes abertos à TI (e.g. infraestrutura, software), que envolvem erros, incidentes, requisições, etc. O maior desafio é automaticamente distinguir entre a necessidade em si, a qual é intrinsecamente negativa (por exemplo, a descrição de um erro), de um sentimento embutido na descrição. Nossa abordagem automaticamente cria um dicionário de domínio que contém termos que expressam sentimentos no contexto de TI, utilizados para filtrar expressões em um tíquete para análise de sentimentos. Nós criamos e avaliamos três métodos de classificação para calcular a polaridade em tíquetes. Nosso estudo utilizou 34.895 tíquetes de cinco organizações. Para polaridade, 2.333 tíquetes foram selecionados aleatoriamente para compor nosso gold standard. Nossos melhores resultados apresentam uma precisão e revocação de 82,83% e 88,42%, respectivamente, o que supera outras soluções de análise de sentimentos comparadas. De forma complementar, emoções em tíquetes foram estudadas considerando os modelos de Ekman e VAD. Um dos três métodos de classificação criados foi adaptado para também identificar emoções nos tíquetes. Possíveis correlações entre polaridade e emoções foram verificadas via regras de associação. Resultados correlacionam tíquetes positivos com valência e dominância altas e excitação baixa, além de presença de alegria e surpresa e ausência de medo. Tíquetes negativos correlacionam com valência, excitação e dominância neutras, além de ausência de alegria e presença de medo. Contudo os resultados para a polaridade negativa não são precisos. / Sentiment Analysis/Opinion Mining has been adopted in software engineering for problems such as software usability and sentiment of developers in projects. This work proposes methods to evaluate the sentiment contained in tickets for IT (Information Technology) support. IT tickets are broad in coverage (e.g. infrastructure, software), and involve errors, incidents, requests, etc. The main challenge is to automatically distinguish between factual information, which is intrinsically negative (e.g. error description), from the sentiment embedded in the description. Our approach is to automatically create a domain dictionary that contains terms with sentiment in IT context, used to filter terms in tickets for sentiment analysis. We created and evaluate three classification methods for calculating the polarity of terms in tickets. Our study was developed using 34,895 tickets from five organizations. For polarity, we randomly selected 2.333 tickets to compose a gold standard. Our best results display an average precision and recall of 82.83% and 88.42%, respectively, which outperforms the compared sentiment analysis solutions. Complementarily, emotions in tickets were studied considering the models of Ekman and VAD. One of the three classification methods created has been adapted to also identify emotions in the tickets. Possible correlations between polarity and emotions were verified through association rules. Results correlate positive tickets with valence and dominance high and low excitation, besides presence of joy and surprise and absence of fear. Negative tickets correlate with valence, neutral excitement and dominance, besides absence of joy and presence of fear. However the results for negative polarity are not accurate.

Identiferoai:union.ndltd.org:IBICT/oai:lume.ufrgs.br:10183/172455
Date January 2017
CreatorsBlaz, Cássio Castaldi Araújo
ContributorsBecker, Karin
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFRGS, instname:Universidade Federal do Rio Grande do Sul, instacron:UFRGS
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0022 seconds