This thesis conducts a systematic study on the chirality of light and its interaction with chiral matter. In the theory section, we introduce a measure of local density of chirality, applying to arbitrary electromagnetic fields. This optical chirality suggests the existence of superchiral modes, which are more selective than circularly polarized light (CPL) in preferentially exciting single enantiomers in certain regions of space. Experimentally, we demonstrate an 11-fold enhancement over CPL in discriminating chiral fluorophores of single handedness in a precisely sculpted superchiral field. This result agrees to within 15% with theoretical predictions. Any chiral configuration of point charges is beyond the scope of our theory on optical chirality. To address chiroptical excitations at nanoscale, we develop a model of twisted dipolar oscillators. We design a simple tunable chiral nanostructure and observe localized chiroptical “hot spots” with dramatically enhanced circular differential scattering. Our work on superchiral light and 3D chiral metamaterials establishes optical chirality as a fundamental and tunable property of light, with implications ranging from plasmonic sensors, absolute asymmetric synthesis to new strategies for fabricating three-dimensional chiral metamaterials. This thesis is organized as such: Chapter 1 provides a background on previous studies of chiroptical phenomena, and recent efforts in preparing chiral metamaterials. Chapter 2 derives theory on optical chirality, superchiral modes and coupled-dipolar oscillators at nanoscale. Chapter 3 introduces material, apparatus, and pitfalls in chiroptical experiments. Chapter 4 is an overview of the experimental procedure and results on generating and observing superchiral enhancement. Chapter 5 describes the experiments on using spectroscopic polarization microscopy to study chiral 3D chiral metamaterials. Finally in Chapter 6, I discuss quantization of optical chirality and perspectives on future directions. / Physics
Identifer | oai:union.ndltd.org:harvard.edu/oai:dash.harvard.edu:1/10436269 |
Date | 18 March 2013 |
Creators | Tang, Yiqiao |
Contributors | Cohen, Adam Ezra |
Publisher | Harvard University |
Source Sets | Harvard University |
Language | en_US |
Detected Language | English |
Type | Thesis or Dissertation |
Rights | open |
Page generated in 0.0021 seconds