Spelling suggestions: "subject:"0ptical chirality"" "subject:"aoptical chirality""
1 |
Plasmonic enhancement of chiral light-matter interactionsAlizadeh, Mohammadhossein 13 February 2016 (has links)
Plasmonic nanostructures provide unique opportunities to improve the detection limits of chiroptical spectroscopies by enhancing chiral light-matter interactions. The most significant of such interaction occur in ultraviolet (UV) range of the electromagnetic spectrum that remains challenging to access by conventional localized plasmon resonance based sensors. Although Surface Plasmon Polaritons (SPPs) on noble metal films can sustain resonances in the desired spectral range, their transverse magnetic nature has been an obstacle for enhancing chiroptical effects. We demonstrate, both analytically and numerically, that SPPs excited by near-field sources can exhibit rich and non-trivial chiral characteristics. In particular, we show that the excitation of SPPs by a chiral source not only results in a locally enhanced optical chirality but also achieves manifold enhancement of net optical chirality. Our finding that SPPs facilitate a plasmonic enhancement of optical chirality in the UV part of the spectrum is of great interest in chiral bio-sensing. Next we focus on the new concepts of transverse spin angular momentum and Belinfante spin momentum of evanescent waves, which have recently drawn considerable attention. We investigate these novel physical properties of electromagnetic fields in the context of chiral surface plasmon polaritons. We demonstrate, both analytically and numerically, that locally excited surface plasmon polaritons possess transverse Spin angular momentum and Belinfante momentum with rich and non-trivial characteristics. We also show that the transverse spin angular momentum of locally excited surface plasmon polaritons leads to the emergence of transverse chiral forces in opposite directions for chiral objects of different handedness. The magnitude of such a transverse force is comparable to the optical gradient force and scattering forces. This finding may pave the way for realization of optical separation of chiral biomolecules
|
2 |
Chirality of Light and Its Interaction with Chiral MatterTang, Yiqiao 18 March 2013 (has links)
This thesis conducts a systematic study on the chirality of light and its interaction with chiral matter. In the theory section, we introduce a measure of local density of chirality, applying to arbitrary electromagnetic fields. This optical chirality suggests the existence of superchiral modes, which are more selective than circularly polarized light (CPL) in preferentially exciting single enantiomers in certain regions of space. Experimentally, we demonstrate an 11-fold enhancement over CPL in discriminating chiral fluorophores of single handedness in a precisely sculpted superchiral field. This result agrees to within 15% with theoretical predictions. Any chiral configuration of point charges is beyond the scope of our theory on optical chirality. To address chiroptical excitations at nanoscale, we develop a model of twisted dipolar oscillators. We design a simple tunable chiral nanostructure and observe localized chiroptical “hot spots” with dramatically enhanced circular differential scattering. Our work on superchiral light and 3D chiral metamaterials establishes optical chirality as a fundamental and tunable property of light, with implications ranging from plasmonic sensors, absolute asymmetric synthesis to new strategies for fabricating three-dimensional chiral metamaterials. This thesis is organized as such: Chapter 1 provides a background on previous studies of chiroptical phenomena, and recent efforts in preparing chiral metamaterials. Chapter 2 derives theory on optical chirality, superchiral modes and coupled-dipolar oscillators at nanoscale. Chapter 3 introduces material, apparatus, and pitfalls in chiroptical experiments. Chapter 4 is an overview of the experimental procedure and results on generating and observing superchiral enhancement. Chapter 5 describes the experiments on using spectroscopic polarization microscopy to study chiral 3D chiral metamaterials. Finally in Chapter 6, I discuss quantization of optical chirality and perspectives on future directions. / Physics
|
3 |
Caractérisation de la chiralité optique dans des systèmes plasmoniques / Characterization of optical chirality effects in plasmonic systemsPham, Kim Anh Aline 06 November 2018 (has links)
L'objectif de ce projet de thèse est de mettre en évidence des phénomènes de chiralité optique induits dans des systèmes plasmoniques. La manipulation des différents degrés de liberté de la lumière est mise en évidence par le biais de techniques expérimentales complémentaires basées sur la tomographie en polarisation, la microscopie à fuites radiatives et la microscopie en champ proche optique (SNOM). D'une part, nous rapportons une méthode de caractérisation non-invasive afin de révéler la présence conjointe de chiralité planaire et volumique au sein de métasurfaces plasmoniques. Pour décrire cette chiralité mixte, une généralisation du modèle de Kuhn est développée. D'autre part, nous démontrons deux dispositifs plasmoniques exploitant le couplage spin-orbite optique pour contrôler les moments angulaires de spin et orbitaux de la lumière. En particulier, le mécanisme réciproque de l'effet spin Hall optique est démontré à l'aide de nano-ouvertures en forme de T: la trajectoire des plasmons de surface est adressée dans le moment angulaire de spin des photons. Cette fonctionnalité est ensuite mise en œuvre dans une expérience de brouillage d'interférence. La génération de vortex plasmoniques est également réalisée par le biais de cavités spirales, dont la chiralité conditionne l'intensité et le moment angulaire orbital des vortex. Enfin, une preuve de concept sur la mesure de la densité locale d’états optique, façonnée par un environnement chiral, est démontrée à l'aide d'une sonde SNOM classique et quantique. Ce travail permet de connecter les grandeurs de densité et de flux de chiralité aux interactions lumière-matière. L'étude de la chiralité dans le contexte de la plasmonique ouvre des perspectives prometteuses dans la nano-manipulation optique, la séparation de molécules chirales et le contrôle de sources quantiques. / In this thesis, we aim at demonstrating chiral optical effects in plasmonic systems. The manipulation of the different degrees of freedom of light is evidenced by complementary experimental approaches based on polarisation tomography, leakage radiation microscopy and scanning near-field optical microscopy (SNOM). On one hand, we report on a non-invasive method to reveal the coexistence of surface and bulk chirality in plasmonic metasurfaces. Specifically, we extend the model of Kuhn to describe this chirality mixture. On the other hand, we demonstrate two plasmonic devices which rely on the optical spin-orbit coupling to control the spin and the orbital angular momentum of light. In particular, the reciprocal mechanism of the spin-Hall effect of light is shown using T-shaped nano-apertures: the trajectory of surface plasmons can be encoded in the spin of the photons. This which-path marker is then implemented in an interference erazer experiment. Plasmonic vortex generation is also reported in spiral cavities. The spiral chirality rules the intensity as well as the angular orbital momentum of the singular fields. Finally, as a proof of concept, we demonstrate using a conventional and quantum SNOM probe that the local density of optical states can be structured by a chiral environment. We also connect the density and flux chirality to light-matter interactions. Studying chirality in the context of plasmonics opens promising prospects in the optical nano-manipulation, chiral molecules discrimination and the control of quantum sources.
|
4 |
Spin-Dependent Optical Phenomena: Fundamentals and ApplicationsVázquez Lozano, Juan Enrique 24 May 2021 (has links)
Tesis por compendio / [ES] Al igual que la masa o la carga, el espín es una propiedad física fundamental que, típicamente, aparece en la descripción de los sistemas cuánticos. Más allá de sus importantes implicaciones teóricas, el creciente avance de la tecnología y el desarrollo de los dispositivos hacia escalas cada vez más pequeñas ha favorecido el surgimiento de multitud de aplicaciones que involucran al espín, entre las cuales se destaca la espintrónica; una nueva forma de electrónica en la que, además de la carga, también se explotan los grados de libertad otorgados por el espín del electrón. Por supuesto, el espín no es exclusivo de los electrones, está presente en todas las partículas elementales, y por ende, en los fotones. En este caso, y a diferencia de lo que ocurre con los electrones, existe una correspondencia clásica que relaciona el espín del fotón con los estados de polarización circular de la luz. Por lo tanto, en nano-óptica y en fotónica, los fenómenos basados en el espín se refieren, grosso modo, a aquellos que son fuertemente dependientes de la polarización circular de la luz. En este marco general, uno de los ejemplos más preponderantes se halla en la interacción espín-órbita. En su versión óptica establece que, bajo ciertas condiciones, es posible que exista una influencia mutua entre el estado de polarización (espín) y la propagación (órbita) de la luz. A pesar de su carácter ubicuo en todos los procesos ópticos básicos, sus efectos son muy débiles, y su manifestación se restringe a la nanoescala, lo cual dificulta su observación e identificación. En este mismo contexto, otro concepto heredado del formalismo cuántico que tiene análogo fotónico directo es la quiralidad óptica; una propiedad dinámica local que, de alguna manera, permite cuantificar escalarmente el espín de un campo óptico. Aparte de su controvertido significado físico y su estrecho vínculo con los sistemas plasmónicos y los metamateriales, como amplificadores de sus efectos, su principal característica fundamental es que, para los campos ópticos en el vacío, es una cantidad conservada. En esta tesis se ahonda teóricamente en los fundamentos básicos de estas características fotónicas. Específicamente, se demuestra analíticamente que la interacción espín-órbita es un fenómeno que surge natural y necesariamente en la nanoescala. Sobre esta base se expone un formalismo para extender la excitación unidireccional de campo cercano más allá de la aproximación dipolar, lo cual facilita su observación y mejora las propiedades de acoplo. Por otra parte, se analiza el concepto de la quiralidad óptica, originalmente definida en el vacío, y se generaliza a cualquier tipo de medio, incluyendo sistemas altamente dispersivos. Asimismo, se exploran diferentes configuraciones que permitan implementar las principales funcionalidades quirópticas (sensado y espectroscopía) en plataformas de fotónica integrada. Además de su potencial para aplicaciones, este estudio tiende un puente para abordar clásicamente propiedades y efectos que tradicionalmente son de tipo cuántico. / [CA] Igual que la massa o la càrrega, l'espín és una propietat física fonamental que, típicament, apareix en la descripció dels sistemes quàntics. Més enllà de les seves importants implicacions teòriques, el creixent avanç de la tecnologia i el desenvolupament dels dispositius cap a escales cada vegada més petites ha afavorit el sorgiment de multitud d'aplicacions que involucren l'espín, entre les quals es destaca l'espintrònica; una nova forma d'electrònica en què, a més de la càrrega, també s'exploten els graus de llibertat atorgats per l'espín de l'electró. Per descomptat, l'espín no és exclusiu dels electrons, és present en totes les partícules elementals, i per tant, en els fotons. En aquest cas, i a diferència del que passa amb els electrons, hi ha una correspondència clàssica que relaciona l'espín del fotó amb els estats de polarització circular de la llum. Per tant, en nano-òptica i en fotònica, els fenòmens basats en l'espín es refereixen, grosso modo, a aquells que són fortament dependents de la polarització circular de la llum. En aquest marc general, un dels exemples més preponderants es troba en la interacció espín-òrbita. En la seva versió òptica estableix que, sota certes condicions, és possible que hi hagi una influència mútua entre l'estat de polarització (espín) i la propagació (òrbita) de la llum. Malgrat el seu caràcter ubic en tots els processos òptics bàsics, els seus efectes són molt febles, i la seva manifestació es restringeix a la nanoescala, la qual cosa dificulta la seva observació i identificació. En aquest mateix context, un altre concepte heretat del formalisme quàntic que té anàleg fotònic directe és la quiralitat òptica; una propietat dinàmica local que, d'alguna manera, quantifica escalarment l'espín d'un camp òptic. A banda del seu controvertit significat físic i el seu estret vincle amb els sistemes plasmònics i els metamaterials, com amplificadors dels seus efectes, la seva principal característica fonamental és que, per als camps òptics en el buit, és una quantitat conservada. Des d'un enfocament teòric, aquesta tesi aprofundeix en els fonaments bàsics d'aquestes característiques fotòniques. Específicament, es demostra analíticament que la interacció espín-òrbita és un fenomen que sorgeix natural i necessàriament en la nanoescala. Sobre aquesta base s'exposa un formalisme per estendre l'efecte d'excitació unidireccional de camp pròxim més enllà de l'aproximació dipolar, la qual cosa facilita la seva observació i millora les propietats d'acoblo. D'altra banda, s'analitza el concepte de la quiralitat òptica, originalment definida en el buit, i es generalitza a qualsevol tipus de mitjà, incloent sistemes altament dispersius. Així mateix, s'exploren diferents configuracions que permetin implementar les principals funcionalitats quiròptiques (sensat i espectroscòpia) en plataformes de fotònica integrada. A més del seu potencial per a aplicacions, aquest estudi tendeix un pont per abordar clàssicament propietats i efectes tradicionalment quàntics. / [EN] Just like mass or charge, spin is a fundamental physical property that, typically, appears in the description of quantum systems. Beyond its important theoretical implications, the rapid advance of technology along with the relentless trend toward the development of devices at increasingly smaller scales have boosted the occurrence of a wide range of applications involving spin, among which is highlighted the spintronics; a novel form of electronics which, besides the charge, also exploits the degrees of freedom provided by the electron spin. Of course, the spin is not exclusive to electrons, but is actually present in all the elementary particles, and therefore in photons. In such a case, and unlike what happens with electrons, there exists a direct classical correspondence relating the spin of photons with the circular polarization states of light. Thus, in nano-optics and photonics, spin-dependent phenomena are broadly referred to as those that strongly rely upon the circular polarization of light. Within this general framework, one of the most preponderant examples is found in the spin-orbit interaction. In its optical version, it states that, under certain conditions, it is possible that there exists a mutual influence between the state of polarization (spin) and the propagation (orbit) of light. Despite its ubiquitous character in all basic optical processes, its effects are very weak, and its manifestation is restricted at the nanoscale, thereby hindering its observation and identification. In this same context, another concept somehow inherited from the quantum formalism with a direct photonic analogue is the optical chirality; a local dynamical property that, in a way, allows one to quantifying scalarly the spin of an optical field. Apart from its controversial physical meaning and its close relationship with plasmonic systems and metamaterials, often regarded as chiral enhancers, its main feature is that, for optical fields in the vacuum, it is a conserved quantity. From a theoretical standpoint, this thesis delves into the basics of these photonic traits. Specifically, it is analytically demonstrated that the spin-orbit interaction is indeed a phenomenon that naturally and necessarily emerges at the nanoscale. Building on this, it is addressed a formalism to extend the effect of near-field unidirectional excitation beyond the dipolar approximation, thus facilitating its observation and improving the coupling performance. On the other side, the optical chirality, originally put forward for electromagnetic fields in vacuum, is thoroughly analyzed and generalized to any arbitrary medium, including highly dispersive systems. Furthermore, different configurations for implementing the main chiroptical functionalities (sensing and spectroscopy) in integrated photonic platforms are explored. Besides its potential for applications, this study lays a bridge to classically approach features and effects which are traditionally quantum-like. / This work was supported by fundings from Ministerio de Economía y Competitividad of Spain (MINECO) under Contract No.TEC2014-51902-C2-1-R. and by ERC Starting Grant No. ERC-2016-STG-714151-PSINFONI. This work was also partially supported by funding from the European Commission Project THOR H2020-EU-829067. / Vázquez Lozano, JE. (2021). Spin-Dependent Optical Phenomena: Fundamentals and Applications [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/166775 / Compendio
|
Page generated in 0.0864 seconds