• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 126
  • 70
  • 18
  • Tagged with
  • 209
  • 71
  • 63
  • 60
  • 60
  • 58
  • 46
  • 44
  • 34
  • 33
  • 33
  • 25
  • 23
  • 22
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Propriétés opto-mécaniques dans des matériaux nanostructurés : couplage plasmons-phonons / Opto-mechanical properties of nanostructured materials : coupled plasmon-phonon

Mrabti, Abdelali 12 December 2016 (has links)
Ce travail de thèse porte essentiellement sur l’étude du couplage élasto-plasmonique dans des systèmes périodiques nanostructurés. Cette interaction plasmon/phonon est étudiée dans un premier temps sur un nanofil métallique inséré dans une cavité d’un cristal bidimensionnel, consistant en un réseau de trous d’air percés dans une matrice diélectrique. Le second système analysé est un cristal à résonances locales composé d'une membrane diélectrique non absorbante, sur laquelle nous avons déposé un réseau carré de nanocylindres d'or. L'intérêt d'étudier ce système résulte du fait qu'il supporte des phonons bien localisés au niveau des nanocylindres, ce qui est une condition nécessaire pour un couplage efficace avec les modes plasmoniques. Le troisième système examiné est également un cristal à résonances locales, composé d’un réseau de nanocylindres métalliques en interaction avec un film métallique par l'intermédiaire d'un film ultra-mince de silice. L’intérêt d’étudier cette dernière structure est double : d’une part, les plasmons deviennent sensibles, par leur forte localisation, à des petites déformations du film ; d’autre part, ce système supporte des phonons bien localisés ce qui permet d’obtenir une amplification locale des vibrations à partir d’une source acoustique. En fin, il s’agit d’une cavité duale pour les phonons et les plasmons. Pour les trois systèmes étudiés dans cette thèse, nous avons montré qu’une vibration mécanique peut moduler au cours de sa période acoustique, la longueur d’onde de résonance des modes plasmoniques supportés par la structure. / This thesis is focused on the elastoplasmonic coupling in periodic nanostructured systems. This interaction plasmon/phonon has been studied first for a metal nanowire inserted into a cavity of a two-dimensional crystal, consisting in a periodic array of holes in a dielectric matrix. The second investigated system is a crystal with sustaining local resonances. The crystal is formed by a square array of gold nanocylindres deposited on a non-absorbing dielectric membrane. The interest of such a system is that it can support phonon modes localized in the nanocylindre enabling thus an efficient coupling with plasmon modes. The third system is a crystal constituted by a metal nanoparticles array coupled to a metal film via an ultra thin dielectric spacer (silica). The motivation behind such a study is twofold: first, plasmon modes are sensitive to small local deformations due to their strong confinement; second such a system supports many localized phonons that can provide a local amplification of vibrations. It is then a dual cavity for phonon and plasmon modes. For the three systems studied in this thesis, we have shown that mechanical vibrations can modulate during an acoustic period the wavelength of the plasmon resonance modes supported by the structure.
2

Soft UV nanoimprint lithography : a versatile technique for the fabrication of plasmonic biosensors / Nanoimpression douce assistée au UV : une technique lithographique adaptée à la fabrication de biocapteurs plasmoniques

Chen, Jing 21 April 2011 (has links)
Durant la dernière décennie, la résonance de plasmon de surface (SPR) est devenue très populaire pour effectuer des analyses au cours d’un greffage chimique (ou biochimique) et étudier ainsi des réactions chimiques. Ce travail de thèse avait pour but de développer une méthode lithographique alternative, la nanoimpression assistée UV dite «douce», qui permet de fabriquer des réseaux de nanomotifs sur de très grandes surfaces (voir chapitre 1 - état de l’art) pour générer des nanostructures métalliques SPR intégrables. Les chapitres 2 et 3 étudient les paramètres expérimentaux de la nanoimpression pour obtenir des nanostructures hautement résolues et avec un minimum de défaut. Notre étude optique a été menée ensuite sur des réseaux de nanotrous imprimés dans des films d’or (chapitre 4). Le mécanisme physique du phénomène de transmission assistée par les plasmon est étudié de manière systématique d’après l’évolution de la position du pic de transmission avec les paramètres structuraux. Des mesures réalisées dans un système fluidique ont ensuite montré une réponse à un faible changement de l’indice de réfraction à la surface du réseau. Enfin, le dernier chapitre (chapitre 5) présente une nouvelle géométrie de biocapteurs optique basé sur une structure tri-couche dans une géométrie de type «nanocavité» à plasmon localisé (LSPR). Ces capteurs LSPR à nanocavités permettent d’améliorer le facteur de mérite d’un ordre de grandeur par rapport aux LSPR classiques. Leurs propriétés de résonance sont discutées à l’aide d’outils de simulation numérique. Enfin, nous démontrons qu’un tel capteur possède une grande sensibilité à la détection de biomolécules et serait donc adapté à l’étude d’interactions immunochimiques. / During the last decade, surface plasmon resonance (SPR) has become widely used to characterize a biological surface and to characterize binding events in the fields of chemistry and biochemistry. Research in this field has been favoured by the tremendous growth in nanofabrication methods among which soft lithographies are alternatively emerging. The purpose of this thesis work was to develop soft UV nanoimprint lithography, an emerging flexible technology allowing patterning on large area of subwavelength photonic nanostructures. The main advantages offered by soft UV nanoimprint lithography concern the simple patterning procedure and the low cost of the experimental setup (see state-of-art presented in chapter 1). Chapters 2 and 3 present the fabrication of master stamps, the study of nanoimprinting parameters coupled with the optimization of the etching process in order to get metallic nanostructures with limited pattern defects. The physical mechanisms of the transmission phenomenon exalted by surface plasmons were studied based on arrays of imprinted gold nanoholes (chapter 4). Extraordinary light transmission has been experimentally demonstrated. The geometrical effects on the position transmission peak were systematically analyzed. Proof-of-concept measurements performed in simple fluidic device indicate a response to small changes in refractive index in the surface vicinity. Finally, chapter 5 proposes a novel design for the optical sensor which is based on “nanocavities” exhibiting coupled localized plasmons. This LSPR sensor offers an improvement of one order of magnitude of the Figure of Merit compared to classical LSPR sensors. The resonance properties of these innovative nanocavities have been studied from numerical simulations and discussed based on their geometrical dependence. Since this system has demonstrated higher sensitivity for detection of biomolecules, it is thus fully adapted to study immunochemical binding interactions.
3

Synthèse et caractérisation d’agrégats bimétalliques pour la magnéto-plasmonique / Synthesis and characterisation of bimetallic clusters for magneto-plasmonics

Loiselet, Ophelliam 14 March 2018 (has links)
Depuis plusieurs années les physiciens de la matière condensée s'intéressent aux propriétés optiques et magnétiques des nanoparticules métalliques. Deux propriétés restent largement étudiées : les résonances plasmon localisées et l'anisotropie magnétique à l'échelle nanométrique. Ces deux effets résultant de propriétés électroniques bien différentes sont habituellement rencontrés dans des nanosystèmes distincts. Depuis les années 2000 des études ont montré qu'il était possible de bénéficier de ces deux caractéristiques dans un seul et même système nanométrique. Dans cette thèse, nous nous intéresserons à la combinaison des propriétés magnétiques et plasmoniques dans des systèmes de taille inférieure à la dizaine de nanomètres: les agrégats bimétalliques de CoAg et de CoAu synthétisés par voie physique sous ultravide encapsulés en matrice (alumine et carbone). Nous nous intéresserons à la structure de ces agrégats bimétalliques de différentes stœchiométries et à l'effet de leur environnement à travers l'étude de leurs propriétés optiques, magnétiques et électroniques (par spectroscopie électronique par perte d'énergie (EELS) sur des particules individuelles). Nous montrerons l'effet de la matrice, carbone ou alumine, sur la structure des agrégats ainsi que sur leurs propriétés magnétiques (moment par agrégat, anisotropie). En optique nous verrons également l'importance de la stœchiométrie entre métal noble et cobalt sur les phénomènes d'amortissement et de décalage de résonance plasmon. Enfin nous montrerons la répartition spatiale des plasmons de surface sur des particules unique par des mesures de STEM-EELS / For several years condensed matter physicists have been interested in the optical and magnetic properties of metallic nanoparticles. Two properties remain largely studied: localized plasmon resonances and magnetic anisotropy at the nanoscale. These two effects resulting from very different electronic properties which are usually encountered in separate nanosystems. Since the 2000's, studies have shown that it is possible to benefit from these two characteristics in a single nanometric system. In this thesis, we will focus on the combination of magnetic and plasmonic properties in systems of size less than ten nanometers: bimetallic clusters of CoAg and CoAu synthesized physically under ultrahigh vacuum and embedded in a matrix (alumina and carbon). We will study the structure of these bimetallic clusters of different stoichiometries and the effect of their environment through the investigation of their optical, magnetic and electronic properties (by electron energy loss spectroscopy (EELS) on individual particles ). We will show the effect of the matrix, carbon or alumina, on the structure of the clusters as well as on their magnetic properties (moment by cluster, anisotropy). In optics we will also see the importance of stoichiometry between noble metal and cobalt on the phenomena of the damping and shifting of the plasmon resonance. Finally we will show the spatial distribution of surface plasmons on single particles by STEM-EELS measurements
4

Control of the emission properties of semiconducting nanowire quantum dots using plasmonic nanoantennas / Contrôle des propriétés d'émission de nanofils semiconducteurs par nanostructures plasmoniques

Jeannin, Mathieu Emmanuel 28 October 2016 (has links)
Ce travail de thèse porte sur l'étude du couplage entre des boîtes quantiques (BQs) insérées dans des nanofils à semiconducteurs et des antennes plasmoniques. Un couplage efficace requiert une caractérisation complète des leurs propriétés optiques respectives, pour assurer un recouvrement spectral et spatial de l'émission de la boîte et du mode de l'antenne et l'alignement de la polarisation du mode plasmonique avec l'émission de la BQ.Les propriétés optiques d'antennes patchs plasmoniques circulaires ont été étudiées par cathodoluminescence (CL). Nous avons montré avec un modèle analytique de la densité locale d'états électromagnétiques (DLE) au voisinage des antennes que leurs résonances sont des superpositions de modes de Bessel d'ordre radiaux et azimutaux différents. Nous avons fabriqué et caractérisé des antennes mono et multimodes, et trouvé que la partie radiative de la DLE n'est pas la seule contribution au signal de CL. De plus, nous avons caractérisé des antennes de différentes épaisseur du plan diélectrique ou différents matériaux. L'analyse de ces résultats nous pousse à proposer une interprétation des contributions au signal de CL annexes à la partie radiative de la DLE supportée par l'antenne. Nous avons de plus démontré la fabrication d'antennes patchs en aluminium opérant dans la partie bleue du spectre électromagnétique, et appliqué la CL à d'autres géométries d'antennes.Nous avons également étudié différentes boîtes quantiques insérées dans des nanofils à semiconducteurs faits d'alliages de matériaux II-VI. Des émetteurs uniques sont étudiés par microphotoluminescence (µPL). Des mesures résolues en temps ou par microscopie de Fourier permettent une caractérisation spectrale, temporelle et la détermination de leur diagramme de rayonnement. Nous avons de plus mis en évidence les variations de propriétés optiques des émetteurs dues aux inhomogénéité de fabrication en étudiant un large ensemble de BQs. La modélisation complète des propriétés électroniques et optiques d'une boîte unique est proposée en utilisant la microscopie de Fourier résolue en polarisation, et une étape de spectroscopie magnéto-optique.Enfin, nous avons développé une méthode de lithographie électronique en deux étapes basée sur le repérage d'un émetteur unique par CL, permettant la fabrication d'antennes plasmoniques couplées de façon déterministe à des BQs insérées dans des nanofils. L'étude de ce couplage révèle un accroissement de l'absorption du faisceau d'excitation accompagné d'une accélération de l'émission de la boîte par couplage radiatif. Il en résulte une exaltation jusqu'à un facteur 2 de la µPL des boîtes. / In this work, we study the coupling between plasmonic nanoantennas and semiconducting nanowire quantum dots (NWQDs). This coupling requires spectral, spatial and polarisation matching of the antenna mode and of the NWQD emission. Hence, a full characterisation of both the antenna system and the NWQDs has to be performed to determine a relevant coupling geometry.Using cathodoluminescence (CL) we investigate the relation between the CL signal of circular patch plasmonic antennas and the electromagnetic local density of states (LDOS). The successive resonances supported by these antennas are complex superimpositions of Bessel modes of different radial and azimuthal order. Applying an analytical LDOS model, we show that we can fabricate and characterise antennas down to single mode resonances. However, the antennas CL spectrum goes beyond the radiative part of the LDOS. By changing the spacing layer thickness and the antennas materials, we propose an explanation for the origin of the additional CL signal we observe that is not related to the radiative LDOS of the patch antennas. We also demonstrate the fabrication of Al patch antennas working in the blue spectral range and apply our method to other geometries.We perform optical characterisation of different quantum dots (QDs) embedded inside semiconducting nanowires (NWs) made of II-VI materials. We use microphotoluminescence (µPL) to study the emission of single NWQDs. Time-resolved measurements and Fourier imaging allows us to extract their exciton lifetime and radiation patterns. The variability in the emission properties of the NWQDs due to inhomogeneity in the growth process are evidenced by studying a statistical set of nanowires. A complete model based on polarisation-resolved Fourier imaging and magneto-optical spectroscopy is detailed, allowing to fully determine the QD electronic and optical properties for an individual system.Finally, we develop a cathodoluminescence-based two-step electron-beam lithography technique to deterministically fabricate plasmonic antennas coupled to NWQDs, enhancing their µPL properties. The coupling results in an enhanced absorption of the pump laser inside the NW and in an increase of the radiative rate of the QD, leading to up to a two-fold intensity enhancement factor for the coupled system.
5

Plasmonic-Photonic Hybrid Nanodevice / Nanodispositif hybride plasmonique-photonique

Zhang, Taiping 22 November 2012 (has links)
Pas de résumé / Metallic nano-particles or nano-antennas (NAs) provide a strong spatial confinement down to the sub wavelength regime. However, a key challenge is to address and collect light from those nano-scale systems. The tiny active area of the NA is both an advantage for its miniaturization, and a real limit for the level of the collected signal. Therefore, one needs to reconsider how to drive efficiently such NA. Here, we propose to tackle this important issue by designing and realizing a novel nano-optical device based on the use of a photonic crystal cavity (PC cavity) to generate an efficient coupling between the external source and a NA. In this thesis, we design and realize a novel nano-optical device based on the coupling engineering of a photonic crystal (PC) cavity and a nanoantenna (NA). The research work includes nanodevice design, fabrication and characterization. The PC structures are formed in an InP-based membrane with four InAsP quantum wells are in the centre of the membrane to act as an optical gain material of laser mode. The PC structures include defect mode PC structures and Bloch mode PC structures. The bowtie NAs are placed on the backbone of the PC structures. The fabrication of the PC is done by electron beam lithography. Reactive ion beam etching (RIBE) is used to transmit the patterns of PC structures into the InP layer. The NAs are then deterministically positioned on the PC structures by a second e-beam exposure followed by a lift-off process. Overlay measurements showed that the deviation in the alignment error could be as small as 20nm.Optical properties of the hybrid structure are investigated in both far-field and near-field. The far-field measurement shows that the NA increases the lasing threshold of the PC cavity. The wavelength of the laser is also impacted. Near-field scanning optical microscopy (SNOM) has employed to investigate the near-field optical field distribution. The measurement results show that the NA modifies the mode of the structure and localizes the optical field under it. The modification depends on the position and orientation of the NA.
6

Nanostructures creuses plasmoniques : préparation par remplacement galvanique, caractérisation et étude des propriétés spectroscopiques

Richard-Daniel, Josée 28 January 2021 (has links)
Les nanostructures plasmoniques sont à l’origine de nombreuses avancées technologiques aussi bien en recherche analytique ou biomédicale que dans la production et le stockage d’énergie. L’intérêt pour cette nanotechnologie est motivé par l'adaptabilité des propriétés optiques et électroniques réalisable en manipulant la composition et la structure des particules métalliques. Contrairement aux matériaux macroscopiques, un minuscule changement de taille ou de morphologie peut entraîner un important changement dans la réponse optique des particules. Puisque l’efficacité des nanostructures pour le développement d’applications dépend fortement de leurs propriétés plasmoniques, un fin contrôle sur celles-ci est crucial. À cet effet, les nanoparticules creuses présentent un intérêt particulier en raison de la possibilité de moduler leur résonance plasmon de surface localisée (LSPR) par la manipulation du rapport de dimension entre la cavité et la coquille. L’approche la plus directe pour la synthèse de ce type d’architectures est la réaction de remplacement galvanique, dont la première étape est de préparer des nanoparticules de géométrie désirée qui serviront de gabarit sacrificiel, pour ensuite les oxyder avec un métal de potentiel de réduction plus élevé afin de produire une coquille creuse qui suivra la forme du gabarit. Cette approche de synthèse nécessite une maitrise de la cinétique de réaction typiquement obtenue en contrôlant le débit d’incorporation du réactif, par l’ajustement de la température du milieu réactionnel et/ou l’ajout d’un co-réducteur. Cette thèse décrit comment l'efficacité du remplacement galvanique peut être améliorée en contrôlant le degré d'hydratation et d'hydrolyse du précurseur d'ions métalliques (c.-à-d. leur spéciation) en utilisant le pH ou la concentration de ligand comme paramètres de contrôle. Dans ce travail, nous avons démontré que les espèces Au3+ hautement chlorées de forme AuCl4-q(OH)- q remplacent agressivement les nanoparticules Ag et conduisent à des structures brisées alors que les espèces fortement hydrolysées sont inactives en raison de leur potentiel de réduction plus faible à celui de l’argent. Toutefois, en utilisant des ions métalliques partiellement hydrolysés, nous avons pu obtenir des nanostructures creuses avec des parois lisses ou rugueuses. Par ailleurs, les propriétés optiques des nanoparticules creuses Ag-Au telles que les énergies de résonance plasmon et l'intensité des bandes d’extinction et de diffusion ont été analysées. Deux paramètres-clé pour modifier les propriétés optiques ont été étudiées, à savoir, la stœchiométrie atomique des métaux et la taille de la matrice sacrificielle utilisée. Nous avons démontré que la combinaison des deux approches offre de nombreuses possibilités pour le réglage des résonances plasmon. Finalement cette étude a été étendue à d’autres ions métalliques, tels que PdCl2-4- et PtCl2-4- , pour la formation de nanoparticules creuses Ag-Pd et Ag-Pt. / Plasmonic nanostructures are at the origin of many technological advances in analytical or biomedical sciences as well as for the production and storage of energy. The interest for this nanotechnology is motivated by the adaptability of optical and electronic properties achievable by manipulating the composition and structure of the particles. Unlike macroscopic materials, a tiny change in the size or morphology may result in a significant change in the optical response of particles. Since the efficiency of nanostructures for application development strongly depends on their plasmonic properties, a fine control over them is crucial. For this purpose, hollow nanoparticles are of interest because of their highly tunable localized surface plasmon resonance (LSPR) made possible by manipulating the dimension ratio between the cavity and the shell. The most direct approach for synthesizing this type of architecture is the galvanic replacement reaction, where nanoparticles of the desired geometry are first prepared as a sacrificial template and then oxidized with a metal ion of higher reduction potential producing a hollow shell which conforms to the shape of the template. This synthesis approach requires excellent control over reaction kinetics typically obtained by adjusting the rate of incorporation of the reagent, the temperature of the reaction medium, and/or by the addition of a co-reducer. This thesis describes how the efficiency of galvanic replacement can be improved by controlling the degree of hydration and hydrolysis of the metal ion precursor (i.e., the metal ion speciation) using pH or ligand concentration as control parameters. In this work, we have demonstrated that highly chlorinated Au3+ species in the forms of AuCl4-q(OH)- aggressively replace Ag nanoparticles and lead to broken structures while highly hydrolyzed species are inactive due to their lower reduction potential than that of the Ag nanoparticles. However, using partially hydrolyzed metal ions, we were able to obtain hollow nanostructures with smooth or rough walls. In addition, the optical properties of Ag-Au hollow nanoparticles such as the plasmon resonance energies and the intensity of the extinction and diffusion bands were analyzed. Two key parameters to modify the optical properties were studied, namely the atomic stoichiometry of the metals and the size of the sacrificial template. We have shown that the combination of the two approaches offers many possibilities for the tuning of plasmon resonances. Finally, this study was extended to other metal ions, such as PdCl2-4 and PtCl2-4 , for the formation of nanoparticles hollow Ag-Pd and Ag-Pt.
7

Subwavelength photonic resonators for enhancing light-matter interactions / Résonateurs photoniques sub-longueur d'onde pour l'amélioration des interactions lumière-matière

Rolly, Brice 11 October 2013 (has links)
Les antennes optiques sont des structures qui permettent de convertir, dans les deux sens, l'énergie électromagnétique entre un faisceau lumineux et une source (ou un absorbeur) localisée en son sein. L'utilisation de résonateurs de taille inférieure à la longueur d'onde permet de réaliser cette fonction de manière efficace, sur une bande spectrale relativement étendue, et d'avoir une antenne compacte.La bonne connaissance des propriétés optiques de ces résonateurs, pris séparément, et de leurs couplages entre eux, est nécessaire pour pouvoir proposer des designs d'antenne efficaces.Dans cette thèse, en se basant sur la décomposition multipolaire des champs et sur la méthode de la matrice-T, on obtient des solutions analytiques rigoureuses pour des résonateurs sphériques et homogènes, dont on tire des modèles simplifiés, intuitifs, et proches de la solution exacte des équations de Maxwell.Entre autre résultats, ces modèles nous ont permis de proposer un design d'antenne optique compacte, directive, à taux de désexcitation et rendement quantique élevés en utilisant une structure hybride métal-diélectrique. Des collaborations avec des expérimentateurs ont permis de valider, d'une part les caractéristiques de chromophores auto-assemblés par ADN (S. Bidault à Paris), et d'autre part, la possibilité d'utiliser plusieurs résonances électriques et magnétiques combinées (supportées par des sphères diélectriques d'indice modéré, n=2,45) pour réfléchir ou bien collecter le rayonnement d'un émetteur dipôle électrique placé à proximité (expérience menée dans le régime micro-ondes par R. Abdeddaim et J-M. Geffrin). / Optical antennas are structures able to convert, in both ways, electromagnetic energy between a light beam and a source (or absorber) placed in the structure. The use of sub-wavelength resonators enables one to realize this function in an efficient way, on relatively broad bandwidths, and to have a compact design. A good understanding of the optical properties of such resonators, taken individually, and of their couplings, is thus necessary in order to propose efficient optical antenna designs. In this manuscript, using a multipole decomposition of the fields and a T-matrix method, we obtain rigorous analytical solutions for spherical, homogeneous resonators, from which we deduce simplified, intuitive models that are still very close to the exact resolution of the Maxwell equations.Among other results, those models enabled us to propose a nanoantenna design that is at once compact, radiative and efficient, by using a hybrid metallo-dielectric structure. Some collaborations with experimental groups enabled us to validate, on the one hand, the optical characteristics of hybrid chromophores that are self-assembled using a DNA template (S. Bidault, Paris), and on the other hand, the possibility of using multiple combined electric and magnetic resonances (supported by dielectric spheres of moderate refractive index, n=2.45) in order to reflect, or more importantly collect, radiation coming from an electric dipole emitter placed nearby (the experiment was realized in the microwave regime by R. Abdeddaim and J-M. Geffrin).
8

Design and fabrication of nanostructures for light-trapping in ultra-thin solar cells / Conception et réalisation de nanostructures pour le piégeage optique dans des cellules photovoltaïques ultra-minces

Massiot, Inès 22 October 2013 (has links)
Diminuer l'épaisseur de la couche d'absorbeur est une solution attractive pour produire des cellules photovoltaïques à coût réduit. Cela permet également de réduire la quantité de matériau actif utilisé ainsi que d'améliorer la collection du courant dans la cellule. Cette thèse s'est focalisée sur la conception de nanostructures pour exalter l'absorption de la lumière dans des couches de semiconducteur d'épaisseur réduite et ainsi proposer des cellules ultraminces efficaces.Dans un premier temps, nous avons proposé une approche originale pour piéger la lumière dans une cellule ultra-fine (≤ 100 nm) en silicium amorphe. Un réseau métallique est placé en face avant de la cellule déposée sur un miroir métallique afin d'obtenir une absorption multi-résonante large bande pour les deux polarisations de la lumière. Nous proposons aussi d'utiliser le réseau métallique comme une électrode transparente alternative afin de réduire les pertes optiques dans le contact avant de la cellule. Une analyse numérique approfondie des mécanismes résonants en jeu a été menée ainsi que la fabrication et la caractérisation optique de démonstrateurs.Dans un deuxième temps, nous avons appliqué ce concept de contact avant multi-résonant à des couches ultra-fines en arsenure de gallium (GaAs). Nous avons montré numériquement et expérimentalement le potentiel d'une nanogrille métallique bi-dimensionnelle pour le confinement efficace de la lumière dans 25 nm de GaAs.Enfin, nous avons étudié la possibilité de réduire l'épaisseur de cellules en silicium cristallin d'un facteur 10 à 100 par rapport à l'état de l'art. Nous avons développé un procédé pour transférer des couches de silicium cristallin de quelques microns d'épaisseur épitaxiées par PECVD sur un substrat hôte bas coût. Nous avons également travaillé à la structuration contrôlée de nanopyramides en vue d'un piégeage optique efficace dans ces couches minces. / Reducing the absorber thickness is an attractive solution to decrease the production cost of solar cells. Furthermore, it allows to reduce the amount of material needed and improve the current collection in the cell. This thesis has been focused on the design of nanostructures to enhance light absorption in very small semiconductor volumes in order to achieve efficient ultra-thin solar cells. First, we have proposed an original light-trapping concept for ultra-thin amorphous silicon (a-Si:H) solar cells. A one-dimensional metallic grating is patterned on the front surface of the cell deposited on a metallic mirror. Broadband multi-resonant absorption has been demonstrated for both light polarizations. The metallic grating is also used as an alternative transparent electrode in order to reduce optical losses in the front contact. A detailed analysis of the multi-resonant absorption mechanism has been carried out through numerical calculations. The fabrication and optical characterization of ultra-thin a-Si:H solar cells with metallic gratings have validated the multi-resonant approach.Second, we have proposed a design with a two-dimensional metallic grid as a resonant front contact for very thin (25 nm) gallium arsenide (GaAs) layers. We have shown through the design and fabrication of a proof-of-concept structure the potential of metallic nanogrids to confine efficiently light absorption with an ultra-thin GaAs layer.Finally, advanced light-trapping structures could also allow a thickness reduction of crystalline silicon wafers of a factor 20 to 100 with respect to state-of-the-art cells. We have developed a process to transfer micron-thick epitaxial crystalline silicon (c-Si) layers onto a low-cost host substrate. Inverted nanopyramids have also been fabricated in crystalline silicon in order to achieve a broadband anti-reflection effect. It opens promising perspectives towards the realization of double-sided nanopatterned ultra-thin c-Si cells.
9

Terahertz nonreciprocal effects using hexagonal ferrites / Effets non-réciproques aux fréquences térahertz dans les ferrites hexagonales

Horák, Tomáš 12 December 2017 (has links)
Des sources et des détecteurs ont été développés récemment pour les fréquences térahertz (THz) mais de nombreux composants passifs sont encore manquants. C’est le cas des composants non-réciproques (NR) qui sont indispensables pour la protection et la stabilisation des sources cohérentes. Dans cette thèse on étudie un nouveau concept d’isolateur THz, basé sur la combinaison d'une résonance plasmonique de surface (SP) avec un matériau à forte gyrotropie dans la gamme THz. Nous utilisons un matériau ferrite de type magnétoplumbite hexagonale, sa gyrotropie résulte d'effets gyromagnétiques dus à la précession de ses moments magnétiques à la fréquence de Larmor autour du champ magnétique interne. Il en résulte une perméabilité tensorielle dont les éléments non-diagonaux opposés induisent une réponse NR. Le fort champ interne d'une hexaferrite mène à une fréquence Larmor proche de la gamme millimétrique. Les permittivités et perméabilités diagonales ont été déterminées par analyseur de réseau vectoriel (VNA) avec un fenêtrage temporel. La gyrotropie et l’anisotropie THz ont été mesurées par spectroscopie dans le domaine temporel (TDS). Les mesures confirment les fortes valeurs attendues, un isolateur de Faraday THz a été conçu et mesuré. D’autre part, un miroir magnéto-plasmonique NR a été conçu, il est basé sur la combinaison du gyromagnétisme THz de l’hexaferrite avec les résonances SP à la surface d’un réseau métallique sub-longueur d'onde. Ces résonnances ont été démontrées expérimentalement et sont en accord avec les simulations. A proximité des résonances SP le dispositif se comporte comme un miroir unidirectionnel. / A key element to protect coherent sources and achieve desired power stability and spectral purity is an isolator, which in THz range has no effective solution. In this thesis, a novel design of THz isolating device based on a one-way reflecting surface is proposed. It combines gyrotropy with surface plasmon (SP) resonance phenomena and requires thus a sufficiently strong THz gyrotropic material. In the last decades a ferrite material with a hexagonal magnetoplumbite structure was created. Gyrotropy in this material is a result of gyromagnetic effects occurring when magnetic dipole moments precess nonreciprocally (NR) at Larmor frequency around an internal magnetic field. Permeability acquires a tensorial form and its unequal off-diagonal elements are responsible for NR behavior. The strong internal field in hexaferrites results in a Larmor frequency close to the mm-wave range. Foremost the diagonal permittivity and permeability elements have been characterized by time-windowed Vector Network Analyzer (VNA). Their strong gyrotropic and anisotropic properties in THz range are then investigated by a magneto-optical Time-domain spectrometry. The obtained strong gyrotropic spectra prove their unique potential for THz NR applications, as shown by an original Faraday isolation measurement using a VNA, and by first designs of a NR magnetoplasmonic mirror using the fitted material parameters. It combines strong hexaferrites gyrotropy with SPs resonances formed due to a metal grating present at the ferrite surface. The SPs excitation in THz is demonstrated numerically and experimentally with a strong agreement. Close to SPs resonance frequencies the device acts as a one-way mirror.
10

PLASMONIQUE MOLÉCULAIRE : SPECTROSCOPIE SUR SURFACE MÉTALLIQUE ET MATÉRIAUX HYBRIDES POUR LA PHOTONIQUE INTÉGRÉE

Colas Des Francs, Gérard 16 November 2009 (has links) (PDF)
Ce document synthétise mes travaux de recherches sur la période 2002-2009. Les axes majeurs de mon activité portent sur le couplage de molécules avec des particules métalliques, supportant des modes plasmons (SPP) : - Microscopie et spectroscopie optiques en champ proche, - Relaxation moléculaire par couplage aux plasmons, en particulier, la possibilité de modifier les propriétés d'émission de molécules par couplage avec des structures métalliques, – Composants plasmoniques pour la photonique intégrée, où, à l'inverse, l'ingéniérie de matériaux optiques (polymères dop´es, non linéaire, . . .) permet de contrôler la propagation de SPPs le long de films métalliques. Finalement, je démontrerai que ces axes peuvent converger vers la notion d'antenne plasmonique, axe que je souhaite d´evelopper dans les prochaines ann´ees. A chaque fois que cela sera possible, je replacerai dans le contexte national ou international mon apport dans ces thématiques.

Page generated in 0.0444 seconds