Cette étude s'inscrit dans le cadre du développement de nouveaux matériaux pour la fabrication additive. Notre objectif est la fabrication de pièces comprenant un alliage métallique complexe (CMA) à l'aide d'un laser UV de stéréolithographie. L'alliage choisi est un alliage quasicristallin dominé par une phase icosaédrique du système AlCuFeB. Des poudres brutes d'atomisations ont été caractérisées par diffractions des rayons X et analyse thermique différentielle. Nous avons montré une bonne absorbance optique de la poudre dans le domaine UV-visible qui rend possible un début de frittage sous l'effet du laser correspondant à la formation de pontages entre les grains à une température d'environ 820°C. Concernant la fabrication à partir d'une suspension de poudres dans un liant, nous avons étudié les propriétés de mouillage des particules AlCuFeB et optimisé un mélange avec une résine époxy chargée par 20 % vol. de particules CMA. L'absorption optique de la suspension dans le domaine UV est suffisante pour fabriquer une pièce composite par stéréolithographie. La granulométrie utilisée est inférieure à 25 µm. Nous avons ainsi réussi à fabriquer des pièces de 14 mm de hauteur, en additionnant des couches de 50 µm. À partir des pièces réalisées, nous avons caractérisé la dureté et les propriétés tribologiques de ce nouveau matériau composite. La dureté des pièces ainsi fabriquées est supérieure à celle de la résine seule et atteint 88 Shore D. Nous avons également mis en évidence une amélioration de 30 % du coefficient de frottement et une diminution du volume d'usure de 40 % par rapport au matériau de la matrice époxy. Ces propriétés rendent attractif ce nouveau matériau composite pour la fabrication par stéréolithographie / This study aimed at developing new materials for additive manufacturing. We focused on producing parts containing complex metallic alloys (CMA) using a UV laser used for stereolithography. The selected intermetallic is a quasicrystalline alloy dominated by the icosahedral phase in the system AlCuFeB. The raw powders produced by gas atomization were characterized by X-ray diffraction and differential thermal analysis. The powders exhibit good optical absorption properties in the UV-visible range allowing direct laser sintering as evidenced by the formation of bridges between the grains at a temperature of about 820°C. In a second step, we have considered the manufacturing of parts made of a suspension of CMA powders in a binder. We have studied the wetting properties of the particles AlCuFeB and optimized a mixture consisting of an epoxy resin filled with 20 % vol. of CMA particles. The optical absorption of the suspension in the UV range was sufficient to produce composite parts by stereolithography. The particle size used was smaller than 25 micrometers. We have managed to make parts reaching 14 mm in height by adding layers with a thickness of 50 microns. Using test samples, we have characterized the hardness and the tribological properties of this new composite material. The hardness of the parts produced by stereolithography is larger than that of epoxy parts and reaches 88 Shore D. We have also shown a 30 % reduction of the friction coefficient as well as a 40 % reduction of wear losses compared to the epoxy matrix. These properties make attractive this new composite material for stereolithography applications
Identifer | oai:union.ndltd.org:theses.fr/2013LORR0008 |
Date | 28 February 2013 |
Creators | Sakly, Adnene |
Contributors | Université de Lorraine, Corbel, Serge, Fournée, Vincent |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.002 seconds